International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.3, p. 94

Section 1.3.7.1. Introduction

A. Authiera* and A. Zarembowitchb

a Institut de Minéralogie et de la Physique des Milieux Condensés, Bâtiment 7, 140 rue de Lourmel, 75015 Paris, France, and bLaboratoire de Physique des Milieux Condensés, Université P. et M. Curie, 75252 Paris CEDEX 05, France
Correspondence e-mail:  aauthier@wanadoo.fr

1.3.7.1. Introduction

| top | pdf |

In recent years, the measurements of ultrasonic wave velocities as functions of stresses applied to the sample and the measurements of the amplitude of harmonics generated by the passage of an ultrasonic wave throughout the sample are in current use. These experiments and others, such as the interaction of two ultrasonic waves, are interpreted from the same theoretical basis, namely nonlinear dynamical elasticity.

A first step in the development of nonlinear dynamical elasticity is the derivation of the general equations of motion for elastic waves propagating in a solid under nonlinear elastic conditions. Then, these equations are restricted to elastic waves propagating either in an isotropic or in a cubic medium. The next step is the examination of two important cases:

  • (i) the generation of harmonics when finite amplitude ultrasonic waves travel throughout an unstressed medium;

  • (ii) the propagation of small amplitude ultrasonic waves when they travel throughout a stressed medium.

Finally, the concept of natural velocity is introduced and the experiments that can be used to determine the third- and higher-order elastic constants are described.








































to end of page
to top of page