International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.3, pp. 94-95

Section 1.3.7.2. Equation of motion for elastic waves

A. Authiera* and A. Zarembowitchb

a Institut de Minéralogie et de la Physique des Milieux Condensés, Bâtiment 7, 140 rue de Lourmel, 75015 Paris, France, and bLaboratoire de Physique des Milieux Condensés, Université P. et M. Curie, 75252 Paris CEDEX 05, France
Correspondence e-mail:  aauthier@wanadoo.fr

1.3.7.2. Equation of motion for elastic waves

| top | pdf |

For generality, these equations will be derived in the X configuration (initial state). It is convenient to obtain the equations of motion with the aid of Lagrange's equations. In the absence of body forces, these equations are [{{\rm d} \over {\rm d}t}{\partial L \over \partial x^{\prime}_i} + {\partial \over \partial X_i}{\partial L \over \partial \left( \partial x_i/\partial X_j\right)} = 0 \eqno(1.3.7.1) ]or [{{\rm d} \over {\rm d}t}{\partial L \over \partial x^{\prime}_i} + {\partial \over \partial X_i}{\partial L \over \partial \alpha_{ij}} = 0, \eqno(1.3.7.2) ]where L is the Lagrangian per unit initial volume and [\alpha_{ij} = \partial x_i/\partial X_j] are the elements of the Jacobian matrix.

For adiabatic motion[L = \textstyle{1\over 2}\displaystyle \rho_0 x_i^{'2} - \rho_0 U, \eqno(1.3.7.3) ]where U is the internal energy per unit mass.

Combining (1.3.7.2)[link] and (1.3.7.3)[link], it follows that [\rho_0 x{''}_i^{2} = {\partial \over \partial X_j} \left( \rho_0 {\partial U \over \partial S_{l m}} {\partial S_{l m}\over \partial \alpha_{ij}}\right), ]which can be written [\rho_0 x{''}_i^{2} = {\partial \over \partial X_j} \left( \alpha_{il}\alpha_{jm}\rho_0 {\partial U \over \partial S_{l m}}\right) ]since [{\partial S_{l m}\over \partial \alpha_{ij}} = \textstyle{1\over 2}\displaystyle \left( \alpha_{im}\delta_{jl} + \alpha_{il} \delta_{jm}\right). ]

Using now the equation of continuity or conservation of mass: [{\rho_0\over \rho}= J = {\rm det} (a_{ij}),]and the identity of Euler, Piola and Jacobi: [{\partial \over \partial x_j} \left( {1\over J} {\partial x_j \over \partial X_i}\right) = 0, ]we get an expression of Newton's law of motion: [\rho x_i'' = {{\rm d}T_{ij}\over {\rm d} X_j}\ {\rm or} \ \rho u_i'' = {{\rm d}T_{ij}\over {\rm d} X_j} \eqno(1.3.7.4) ]with [T_{ij} = {\rho_0 \over J} \alpha_{ik}\alpha_{jl} {\partial U \over \partial S_{kl}} = \rho \alpha_{ik}\alpha_{jl} {\partial U \over \partial S_{kl}}. ][T_{ij}] becomes [T_{ij} = {1\over J} \alpha_{ik} \alpha_{jl} t_{kl} ]since [t_{kl} = \rho_0 {\partial U \over \partial S_{kl}}. ][t_{kl}], the thermodynamic tensor conjugate to the variable [S_{kl}/\rho_ 0], is generally denoted as the `second Piola–Kirchoff stress tensor'.

Using Φ, the strain energy per unit volume, Newton's law (1.3.7.4)[link] takes the form [\rho x_i'' = {\partial \over \partial X_j} \left(\alpha_{jk} {\partial \Phi \over \partial S_{ik}}\right) \ \ {\rm or} \quad \rho u_i'' = {\partial \over \partial X_j} \left(\alpha_{jk} {\partial \Phi \over \partial S_{ik}}\right) ]and [T_{ij} = \alpha_{jk}{\partial \Phi \over \partial S_{ik}}. \eqno(1.3.7.5) ]








































to end of page
to top of page