
1.4. Thermal expansion

By H. Küppers

1.4.1. Definition, symmetry and representation surfaces

If the temperature T of a solid is raised by an amount �T, a
deformation takes place that is described by the strain tensor uij:

uij ¼ �ij�T: ð1:4:1:1Þ

The quantities �ij are the coefficients of thermal expansion. They
have dimensions of T�1 and are usually given in units of
10�6 K�1. Since uij is a symmetrical polar tensor of second rank
and T is a scalar, �ij is a symmetrical polar tensor of second rank
ð�ij ¼ �jiÞ. According to the properties of the strain tensor uij (cf.
Section 1.3.1.3.2), the ‘volume thermal expansion’, �, is given by
the (invariant) trace of the ‘linear’ coefficients �ij.

� ¼
1

V

�V

�T
¼ �11 þ �22 þ �33 ¼ trace ð�ijÞ: ð1:4:1:2Þ

The magnitudes of thermal expansion in different directions,
�0

11, can be visualized in the following ways:
(1) The representation quadric (cf. Section 1.1.3.5.2)

�ijxixj ¼ C ð1:4:1:3Þ

can be transformed to principal axes X1, X2 and X3 with principal
values �1, �2 and �3:

�1X2
1 þ �2X2

2 þ �3X2
3 ¼ C:

The length of any radius vector leading to the surface of the
quadric ðC ¼ 1Þ represents the reciprocal of the square root of
thermal expansion along that direction, �0

11 ¼ a1ia1j�ij (akl are the
direction cosines of the particular direction).

If all �i are positive, the quadric ðC ¼ þ1Þ is represented by an
ellipsoid, whose semiaxes have lengths 1=

ffiffiffiffi

�i

p
. In this case, the

square of the reciprocal length of radius vector r, r�2, represents
the amount of positive expansion in the particular direction, i.e. a
dilation with increasing temperature. If all �i are negative, C is set
to �1. Then, the quadric is again an ellipsoid, and r�2 represents a
negative expansion, i.e. a contraction with increasing tempera-
ture.

If the �i have different signs, the quadric is a hyperboloid. The
asymptotic cone represents directions along which no thermal
expansion occurs ð�0

11 ¼ 0Þ.
If one of the �i is negative, let us first choose C ¼ þ1. Then, the

hyperboloid has one (belt-like) sheet (cf. Fig. 1.3.1.3) and the
squares of reciprocal lengths of radius vectors leading to points
on this sheet represent positive expansions (dilatations) along the
particular directions. Along directions where the hyperboloid has
no real values, negative expansions occur. To visualize these, C is
set to �1. The resulting hyperboloid has two (cap-like) sheets (cf.
Fig. 1.3.1.3) and r�2 represents the amount of contraction along
the particular direction.

If two of the �i are negative, the situation is complementary to
the previous case.

(2) A crystal sample having spherical shape (radius ¼ 1 at
temperature T) will change shape, after a temperature increase
�T, to an ellipsoid with principal axes ð1 þ �1�TÞ, ð1 þ �2�TÞ

and ð1 þ �3�TÞ. This ‘strain ellipsoid’ is represented by the
formula

X2
1

ð1 þ �1�TÞ
2
þ

X2
2

ð1 þ �2�TÞ
2
þ

X2
3

ð1 þ �3�TÞ
2
¼ 1:

Whereas the strain quadric (1.4.1.3) may be a real or imaginary
ellipsoid or a hyperboloid, the strain ellipsoid is always a real
ellipsoid.

(3) The magnitude of thermal expansion in a certain direction
(the longitudinal effect), �0

11, if plotted as radius vector, yields an
oval:

ð�1X2
1 þ �2X2

2 þ �3X2
3 Þ

2
¼ ðX2

1 þ X2
2 þ X2

3 Þ
3:

If spherical coordinates ð’; #Þ are used to specify the direction,
the length of r is

jrj ¼ �0
11 ¼ ð�1 cos2 ’þ �2 sin2 ’Þ sin2 #þ �3 cos2 #: ð1:4:1:4Þ

Sections through this representation surface are called polar
diagrams.

The three possible graphical representations are shown in Fig.
1.4.1.1.

The maximum number of independent components of the
tensor �ij is six (in the triclinic system). With increasing symmetry,
this number decreases as described in Chapter 1.1. Accordingly,
the directions and lengths of the principal axes of the repre-
sentation surfaces are restricted as described in Chapter 1.3 (e.g.
in hexagonal, trigonal and tetragonal crystals, the representation
surfaces are rotational sheets and the rotation axis is parallel to
the n-fold axis). The essential results of these symmetry consid-
erations, as deduced in Chapter 1.1 and relevant for thermal
expansion, are compiled in Table 1.4.1.1.

The coefficients of thermal expansion depend on temperature.
Therefore, the directions of the principal axes of the quadrics in
triclinic and monoclinic crystals change with temperature (except
the principal axis parallel to the twofold axis in monoclinic
crystals).

The thermal expansion of a polycrystalline material can be
approximately calculated if the �ij tensor of the single crystal is
known. Assuming that the grains are small and of comparable
size, and that the orientations of the crystallites are randomly
distributed, the following average of �0

11 [(1.4.1.4)] can be
calculated:

��� ¼
1

4�

Z 2�

0

Z �

0

�0
11 sin# d# d’ ¼ 1

3ð�1 þ �2 þ �3Þ:

If the polycrystal consists of different phases, a similar procedure
can be performed if the contribution of each phase is considered
with an appropriate weight.
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Fig. 1.4.1.1. Sections (ac plane) of representation surfaces for a trigonal (or
tetragonal or hexagonal) crystal with �11 ¼ �22 ¼ �1 and
�33 ¼ þ3 � 10�5 K�1 (similar to calcite). (a) Quadric, (b) strain ellipsoid
(greatly exaggerated), (c) polar diagram. The c axis is the axis of revolution.
Sectors with negative expansions are dashed.
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

It should be mentioned that the true
situation is more complicated. The grain
boundaries of anisotropic polycrystalline
solids are subject to considerable stresses
because the neighbouring grains have
different amounts of expansion or
contraction. These stresses may cause
local plastic deformation and cracks may
open up between or within the grains.
These phenomena can lead to a hyster-
esis behaviour when the sample is heated
up or cooled down. Of course, in poly-
crystals of a cubic crystal species, these
problems do not occur.

If the polycrystalline sample exhibits a
texture, the orientation distribution
function (ODF) has to be considered in
the averaging process. The resulting
overall symmetry of a textured poly-
crystal is usually 1

m m (see Section
1.1.4.7.4.2), showing the same tensor
form as hexagonal crystals (Table 1.4.1.1),
or mmm.

1.4.2. Grüneisen relation

Thermal expansion of a solid is a conse-
quence of the anharmonicity of inter-
atomic forces (see also Section 2.1.2.8). If
the potentials were harmonic, the atoms
would oscillate (even with large ampli-
tudes) symmetrically about their equili-
brium positions and their mean central
position would remain unchanged. In
order to describe thermal expansion, the
anharmonicity is most conveniently
accounted for by means of the
so-called ‘quasiharmonic approximation’,
assuming the lattice vibration frequencies ! to be independent of
temperature but dependent on volume ½ð@!=@VÞ 6¼ 0�. Anhar-
monicity is taken into account by letting the crystal expand, but it
is assumed that the atoms vibrate about their new equilibrium
positions harmonically, i.e. lattice dynamics are still treated in the
harmonic approximation. The assumption ð@!=@VÞ ¼ 0, which is
made for the harmonic oscillator, is a generalization of the
postulate that the frequency of a harmonic oscillator does not
depend on the amplitude of vibration.

This approach leads, as demonstrated below, to the Grüneisen
relation, which combines thermal expansion with other material
constants and, additionally, gives an approximate description of
the temperature dependence of thermal expansion (cf. Krishnan
et al., 1979; Barron, 1998).

For isotropic media, the volume expansion � ½¼ 3�
¼ �11 þ �22 þ �33�, cf. (1.4.1.2), can be expressed by the ther-
modynamic relation

� ¼
1

V

@V

@T

� �

p

¼ �
1

V

@V

@p

� �

T

@p

@T

� �

V

¼ �
@p

@T

� �

V

; ð1:4:2:1Þ

� being the isothermal compressibility. To obtain the quantity
ð@p=@TÞV , the pressure p is deduced from the free energy F,
whose differential is dF ¼ �S dT � p dV, i.e. from

p ¼ �ð@F=@VÞT : ð1:4:2:2Þ

In a crystal consisting of N unit cells with p atoms in each unit
cell, there are 3p normal modes with frequencies !s (denoted by
an index s running from 1 to 3p) and with N allowed wavevectors

qt (denoted by an index t running from 1 to N). Each normal
mode !sðqtÞ contributes to the free energy by the amount

fs;t ¼
h-

2
!sðqtÞ þ kT ln 1 � exp �

h- !sðqtÞ

kT

� �� �

: ð1:4:2:3Þ

The total free energy amounts, therefore, to

F ¼
X

3p

s¼1

X

N

t¼1

fs;t

¼
X

3p

s¼1

X

N

t¼1

h-

2
!sðqtÞ þ kT ln 1 � exp �

h- !sðqtÞ

kT

� �� �� �

: ð1:4:2:4Þ

From (1.4.2.2)

p ¼ �
@F

@V

� �

T

¼ �
X

3p

s¼1

X

N

t¼1

h-

2

@!s

@V
þ

expð�h- !s=kTÞh- ð@!s=@VÞ

1 � expð�h- !s=kTÞ

� �

: ð1:4:2:5Þ

The last term can be written as

h- ð@!s=@VÞ

expðh- !s=kTÞ � 1
¼ h- nð!sðqtÞ;TÞ

@!s

@V
; ð1:4:2:6Þ

where nð!s;TÞ is the Bose–Einstein distribution
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Table 1.4.1.1. Shape of the quadric and symmetry restrictions

Quadric

System Shape Direction of principal axes

No. of
independent
components

Nonzero
components

Triclinic General
ellipsoid or
hyperboloid

No restrictions 6

Monoclinic One axis parallel to twofold
axis (b)

4

Orthorhombic Parallel to crystallographic
axes

3

Trigonal,
tetragonal,
hexagonal

Revolution
ellipsoid or
hyperboloid

c axis is revolution axis 2

Cubic,
isotropic media

Sphere Arbitrary, not defined 1
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nð!s;TÞ ¼
1

expðh- !s=kTÞ � 1
: ð1:4:2:7Þ

Differentiation of (1.4.2.5) and (1.4.2.6) with respect to
temperature at constant volume [see (1.4.2.1)] yields

@p

@T

� �

V

¼ �
X

s

X

t

h-
@nð!s;TÞ

@T

@!sðqtÞ

@V

¼ �
X

s

X

t

cV
s;t

1

!sðqtÞ

@!sðqtÞ

@V
ð1:4:2:8Þ

with

cV
s;t ¼ h- !sðqtÞ

@nð!s;TÞ

@T
¼ k

ðh- !s=kTÞ
2 expðh- !s=kTÞ

½expðh- !s=kTÞ � 1�2
: ð1:4:2:9Þ

This quantity, cV
s;t (the Einstein function), is the well known

contribution of the normal mode !sðqtÞ to the specific heat (at
constant volume):

cV ¼
X

s

X

t

cV
s;t ¼

X

s

X

t

h- !sðqtÞ
@nð!s;TÞ

@T
: ð1:4:2:10Þ

Equation (1.4.2.8) can be simplified by the introduction of an
‘individual Grüneisen parameter’ �s;t for each normal mode
!sðqtÞ:

�s;t ¼ �
V

!sðqÞt

@!sðqÞt

@V
¼ �

@½ln!sðqtÞ�

@ðln VÞ
: ð1:4:2:11Þ

Equation (1.4.2.8) then reads [with (1.4.2.1)]

@p

@T

� �

V

¼
1

V

X

s

X

t

cV
s;t�s;t ¼

�

�
: ð1:4:2:12Þ

Based on these individual parameters �s;t, an average (or overall
mode-independent) Grüneisen parameter ��� can be defined as

��� ¼

PP

�s;tc
V
s;t

PP

cV
s;t

¼

PP

�s;tc
V
s;t

cV
: ð1:4:2:13Þ

In this averaging process, the contribution of each normal mode
to ��� is weighted in the same way as it contributes to the specific
heat cV [see (1.4.2.10)]. Equations (1.4.2.12) and (1.4.2.13) lead to
the Grüneisen relation

� ¼ ���
�cV

V
: ð1:4:2:14Þ

The above derivation was made for isotropic media. For aniso-
tropic media, �V=V is replaced by the strain ukl and ��1 is
replaced by the stiffness tensor cijkl [cf. Chapter 2.1 and equation
(2.1.2.75)]. Then the Grüneisen parameter turns out to be a
second-rank tensor �ij:

�ij ¼
V

cV
cT

ijkl�kl: ð1:4:2:15Þ

In the Debye approximation, the mode frequencies scale linearly
with the cut-off frequency !D. Therefore, with h- !D ¼ kTD, the
average isotropic Grüneisen parameter is calculated to be

�D ¼ �
V

!D

@!D

@V
¼ �

V

TD

@TD

@V
¼ �

@ðln TDÞ

@ðln VÞ
:

Since, in the Debye theory, TD is independent of temperature, �D

turns out to be independent of temperature. As � and V are only
weakly temperature dependent, the thermal expansion � should
then, according to (1.4.2.14), roughly behave like cV, i.e. � should
be proportional to T3 at very low temperatures, and should be
approximately constant for T � TD (the Dulong–Petit law). This

behaviour is found to be approximately satisfied for many
compounds, even with different types of interatomic interaction,
and � takes values roughly between 1 and 2. Even in the case of
crystals with highly anisotropic elastic and thermal behaviour, the
three principal values of the tensor �ij [(1.4.2.15)] are comparably
uniform, having values of about 2 (Küppers, 1974).

Effectively, � shows a certain more or less pronounced
dependence on temperature. The individual �s;t are assumed to
be temperature independent. However, being an average over
the whole spectrum of excited modes [cf. (1.4.2.13)], ��� will not
necessarily have the same value at low temperatures (when only
low frequencies are excited) as at high temperatures (when all
modes are excited). Two limiting cases can be considered:

(1) At very high temperatures, all normal modes contribute by
an equal amount and the overall ��� becomes simply the mean
value of all �s;t.

�1 ¼
1

3pN

X

3p

s

X

N

t

�s;t:

(2) At very low temperatures, only the lower frequencies
contribute. If only the acoustic branches are considered, ��� can be
related to the velocities of elastic waves. In the long-wavelength
limit, dispersion is neglected, i.e. jqj is proportional to !:

jqtj ¼
!sðqtÞ

vsð’; #Þ
; ð1:4:2:16Þ

where vsð’; #Þ ðs ¼ 1; 2; 3Þ describes the velocities of the three
elastic waves propagating in a direction ð’; #Þ. The density of
vibrational states for each acoustic branch in reciprocal space
increases with q2 dq. From (1.4.2.16), it follows that the number
of normal modes in an increment of solid angle in q space,
d� ¼ sin# d# d’, within a frequency interval ! to !þ d!, is
proportional to ð!2 d! d�Þ=v3. The summation over t can be
converted into an integration over ! and �, leading to

�0 ¼

X3

s¼1

Z

�sð#; ’Þ d�

v3
s ð#; ’Þ

X3

s¼1

Z

d�

v3ð#; ’Þ

:

The vsð’; #Þ can be calculated if the elastic constants are known.
For isotropic solids, the term

P

v�3
s can be replaced (as done in

Debye’s theory of heat capacity) by ðv�3
l þ 2v�3

tr Þ, with vl being
the velocity of the longitudinal wave and vtr the velocity of the
transverse waves.

In metals, the conduction electrons and magnetic interactions
yield contributions to the free energy and to the specific heat.
Accordingly, expression (1.4.2.14) can be augmented by intro-
duction of an ‘electronic Grüneisen parameter’, �e, and a
‘magnetic Grüneisen parameter’, �m, in addition to the ‘lattice
Grüneisen parameter’, �l, considered so far:

� ¼
�

V
ð�lc

V
l þ �ecV

e þ �mcV
mÞ:

1.4.3. Experimental methods

1.4.3.1. General remarks

Although the strain tensor uij and the thermal expansion
tensor �ij in general contain components with i 6¼ j (shear
strains), in practice only longitudinal effects, i.e. relative length
changes �l=l with temperature changes �T, are measured along
different directions and the results are later transformed to a
common coordinate system. Diffraction methods directly yield
this ratio �l=l. Other measuring techniques require separate
measurements of �l and l. The error in the measurement of l can
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

usually be neglected. Thus, the accuracies of �l and �T limit the
accuracy of thermal expansion coefficients. The temperature
interval �T is determined by two measurements of temperatures
T2 >T1, with T2 � T1 ¼ �T. To increase the accuracy of the
difference �T, this interval should be large. The measured
thermal expansion �l=ðl�TÞ is usually assigned to a temperature
at the midpoint of the temperature interval, T0 ¼ ðT2 � T1Þ=2.
This procedure is only justified if thermal expansion does not
depend on temperature.

Since, in fact, thermal expansion depends on temperature, in
principle, smaller intervals should be chosen, which, in turn,
enlarge the error of �T. Here, a compromise has to be made.
Sometimes, after completion of a first run and after reviewing the
preliminary course of �ðTÞ, it is necessary to repeat some
measurements using smaller temperature intervals in tempera-
ture ranges with large curvatures.

The more-or-less curved course of �ijðTÞ is usually fitted by
polynomials in powers of temperature. Here, those T terms
should be selected that are physically meaningful in the particular
temperature range. For the low-temperature behaviour of a
metal, a polynomial of type � ¼ AT þ BT3 þ CT5 should be
chosen. For minerals at higher temperatures, a polynomial
� ¼ �0 þ AT þ BT�1 þ CT�2 is used (Saxena & Shen, 1992).

Temperature is usually measured by thermocouples and, in the
cases of optical or electrical measurements (Sections 1.4.3.3 and
1.4.3.4) and at low temperatures also by platinum resistance
thermometers. Above 1100 K, optical pyrometers can be used.

In order to measure the thermal expansion of a crystal, at least
as many independent measurements are necessary as the tensor
has independent components (fourth column in Table 1.4.1.1). It
is advisable, however, to carry out more measurements than are
necessary. In this case (of redundancy), a ‘best’ set of tensor
components is to be determined by least-squares methods as
described below.

Let us assume the most general case of a triclinic crystal, where
m > 6 independent measurements of thermal expansions bk

ðk ¼ 1; . . . ;mÞ were performed along m different directions with
direction cosines ð�1jÞk ðj ¼ 1; 2; 3Þ with respect to the chosen
coordinate system. Each measurement bk is related to the six
unknown tensor components �ij (to be determined) by

bk ¼ ð�0
11Þk ¼ ð�1iÞkð�1jÞk�ij: ð1:4:3:1Þ

If the �ij are replaced by �� ð� ¼ 1; . . . ; 6Þ, using Voigt’s one-
index notation (Section 1.1.4.10.2), then bk ¼ Ck��� represents
an overdetermined inhomogeneous system of m linear equations
for the six unknowns ��. The coefficients Ck�, forming an m � 6
matrix, are products containing direction cosines according to
(1.4.3.1). The solution is obtained after several matrix calcula-
tions which are indicated by the formula (Nye, 1985)

�� ¼ ðCt
l� � Cl"Þ

�1
� 	

��
Ct

k�

n o

bk

ð�; �; "; � ¼ 1; . . . ; 6; l; k ¼ 1; . . . ;mÞ;

where a superscript ‘t’ means transposed.
Instead of determining the tensor components of a triclinic or

monoclinic crystal in a direct way, as outlined above, it is also
possible to determine first the temperature change of the crys-
tallographic unit cell and then, by formulae given e.g. by
Schlenker et al. (1978), to deduce the tensor components �ij. The
direct approach is recommended, however, for reasons of the
propagation of errors (Jessen & Küppers, 1991).

The experimental techniques of measuring relative length
changes �l=l that are most widely used include diffraction,
optical interferometry, pushrod dilatometry and electrical capa-
citance methods. If the specimens available are very small and/or
irregular in shape, only diffraction methods can be used. The
other methods require single-crystal parallelepipedal samples
with at least 5 mm side lengths.

1.4.3.2. Diffraction

Thermal expansion expresses itself, on a microscopic scale, by
a change of the interplanar spacings of lattice planes. These can
be measured by use of diffraction methods from changes of Bragg
angles �. Differentiation of the Bragg equation 2d sin � ¼ 	,
giving �d=d ¼ � cot ���, yields the thermal expansions �0

11 in
directions normal to lattice planes (hkl) (i.e. along
h ¼ ha� þ kb� þ lc�) and, if h has direction cosines a

ðhklÞ
1j with

respect to the chosen Cartesian coordinate system,

�0ðhklÞ
11 ¼ a

ðhklÞ
1i a

ðhklÞ
1j �ij ¼

1

dðhklÞ

@dðhklÞ

@T
¼ � cot �

@�

@T
:

The coefficient cot � permits a tremendous increase of sensitivity
and accuracy if � ! 90�. That means, if possible, high-angle
ð� > 70�Þ reflections should be used for measurement because,
for a given �d, the changes of Bragg angles j��j to be measured
increase with ðcot �Þ�1

¼ tan �.
The most important diffraction techniques (X-radiation is

preferentially used) are: the rotating-crystal method, the Weis-
senberg method and diffractometers with counter recording. If
small single crystals (> approximately 50 mm) are not available,
powder methods (using a Debye–Scherrer film camera or powder
diffractometer) must be used, although the advantage of the
highly accurate back-reflections, in general, cannot be used.

Experimental aspects of measuring absolute d-values are
discussed in detail in Volume C of International Tables for
Crystallography (1999), Part 5. Since only relative displacements
are to be measured in the present case, many complications
connected with the determination of absolute values do not apply
for thermal expansion measurements, such as zero-point
correction, eccentricity of the mounted sample, refraction,
absorption and diffraction profile.

1.4.3.3. Optical methods (interferometry)

The basic principle of measuring thermal expansion by inter-
ferometry consists of converting sample-length changes into
variations of optical path differences of two coherent mono-
chromatic light beams, which are reflected from two opposite end
faces of the sample (or planes corresponding to them). An He–
Ne laser usually serves as a light source. A beam expander
produces a parallel beam and interference by two planes, which
are slightly inclined to each other, produces fringes of equal
thickness. Thermal expansion causes a movement of this fringe
pattern, which is detected by photodiodes. The number of fringes
passing a reference mark is counted and gives a measure of the
relative movement of the two planes.

As examples for various realizations of interferometric devices
(Hahn, 1998), two basic designs will be described.

(i) Fizeau interferometer (Fig. 1.4.3.1). The sample S is covered
by a thin plate P2 (with a polished upper surface and a coarsely
ground and non-reflecting lower surface) and is placed in
between a bottom plate P3 and a wedge-shaped plate P1 (wedge
angle of about 1�). The upper surface of P1 reflects the incident
beam (i) to a reflected beam (r) so that it is removed from the
interference process. The relevant interference takes place
between ray (1) reflected by the lower surface of P1 and ray (2)
reflected by the upper surface of P2. A cylindrical tube T, which
defines the distance between P1 and P3 as well as P2, is usually
made of fused silica, a material of low and well known thermal
expansion. The measured dilatation is caused, therefore, by the
difference between thermal expansion of the sample and a
portion of the fused silica tube of equal length. The whole
apparatus is mounted in a thermostat.

(ii) Michelson interferometer (Fig. 1.4.3.2). The reference
mirror M and the beam-splitter B are placed outside the ther-
mostat. The upper face of the sample S is one interference plane
and the upper surface of the bottom plate is the other. The
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1.4. THERMAL EXPANSION

interference pattern IP is divided into two fields corresponding to
the two ends of the sample. The difference of fringe movements
within these two fields yields the absolute thermal expansion of
the sample.

1.4.3.4. Electrical methods

1.4.3.4.1. Inductance changes (pushrod dilatometry)

With this method, the expansion of the crystal is transmitted
out of the cooled or heated region to an external measuring
device by a rod made of a reference material whose thermal
expansion is low and well known (usually silica glass) (cf. Gaal,
1998). If this rod is inside a tube of the same material (silica
glass), and the specimen is inside as well, then the difference in
expansion between the crystal and an equal length of the refer-
ence material is measured. Above 1100 K, instead of silica glass,
high-purity alumina or single-crystal sapphire or tungsten rods
are used.

To measure the displacement of the rods, several techniques
are used. The most important are:

(1) a ferrite core is moved in a coil to change the inductivity of
the coil, which is detected by the change of resonance frequency
of an electrical circuit having a fixed capacitance;

(2) linear-variable-differential transformers.
Temperature gradients in the rod and the tube can lead to severe
complications. For every determination, the system should be
calibrated by certified materials (White, 1998), such as �-Al2O3,
Cu, Pt, fused silica, Si, W, Mg or Mo.

1.4.3.4.2. Capacitance methods

In a way similar to the interferometric methods, the change of
the gap between the lower surface of P1 and the upper surface of
P2 (Fig. 1.4.3.1) is used to determine the thermal expansion of the
sample. This gap – with electrically conducting surfaces – is used
as the capacitance in an electric circuit with a fixed inductance.
The change of capacitance leads to a change of resonance
frequency, which is measured.

1.4.4. Relation to crystal structure

The anharmonicities of the interatomic potentials gain impor-
tance with increasing vibration amplitudes of the atoms. Since, at
a given temperature, weakly bonded atoms oscillate with larger
amplitudes, they contribute to a larger degree to thermal
expansion in comparison with stronger bonds. This correlation
follows also from the Grüneisen relation (1.4.2.14) because � (or

�) is proportional to the compressibility, which, in turn, is a rough
measure of the interatomic and intermolecular forces.

This simple consideration allows qualitative predictions of the
thermal expansion behaviour of a crystal species if the structure
is known:

(1) Covalent bonds are associated with very small thermal
expansions (diamond, graphite perpendicular to the c axis),
whereas van der Waals bonds give rise to large thermal expan-
sions (N2, graphite parallel to the c axis). In accordance with their
relatively high elastic stiffness, hydrogen bonds, especially short
hydrogen bonds, lead to comparably small thermal expansions.

(2) In layer-like structures, the maximum thermal expansion
occurs normal to the layers (mica, graphite, pentaerythritol).

(3) Thermal expansion decreases when the density of weak
bonds decreases: therefore, expansion is greater for crystals with
small molecules (many van der Waals contacts per volume) than
for their larger homologues (e.g. benzene–naphthalene–anthra-
cene).

Buda et al. (1990) have calculated the thermal expansion of
silicon by means of ab initio methods. It is to be expected that
these methods, which are currently arduous, will be applicable to
more complicated structures in the years to come and will gain
increasing importance in this field (cf. Lazzeri & de Gironcoli,
1998).

It is observed rather frequently in anisotropic materials that an
enhanced expansion occurs along one direction and a contraction
(negative expansion) in directions perpendicular to that direction
(e.g. in calcite). The volume expansion, i.e. the trace of �ij, is
usually positive in these cases, however. If the tensor of elastic
constants is known, such negative expansions can mostly be
explained by a lateral Poisson contraction caused by the large
expansion (Küppers, 1974).

Only a few crystals show negative volume expansion and
usually only over a narrow temperature range (e.g. Si and fused
silica below about 120 K and quartz above 846 K) (White, 1993).
Cubic ZrW2O8 was recently found to exhibit isotropic negative
thermal expansion over the complete range of stability of this
material (0.5–1050 K) (Mary et al., 1996). This behaviour is
explained by the librational motion of practically rigid polyhedra
and a shortening of Zr—O—W bonds by transverse vibration of
the oxygen atom. By tailoring the chemical content (of TiO2 or
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Fig. 1.4.3.1. Schematic diagram of a Fizeau interferometer. Fig. 1.4.3.2. Schematic diagram of a Michelson interferometer.
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LiAlSiO4) in a glassy matrix, an expansion coefficient can be
achieved that is nearly zero over a desired temperature range.

A compilation of numerical values of the tensor components of
more than 400 important crystals of different symmetry is given
by Krishnan et al. (1979).

Phase transitions are accompanied and characterized by
discontinuous changes of derivatives of the free energy. Since the
thermal expansion � is a second-order derivative, discontinuities
or changes of slope in the �ðTÞ curve are used to detect and to
describe phase transitions (cf. Chapter 3.1).

1.4.5. Glossary

�ij thermal expansion
� volume thermal expansion
� Grüneisen parameter
� isothermal compressibility
uij strain tensor
cV specific heat at constant volume
F free energy
p pressure
S entropy
T temperature
V volume
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