International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.6, pp. 150-177
https://doi.org/10.1107/97809553602060000633

Chapter 1.6. Classical linear crystal optics

A. M. Glazera* and K. G. Coxb

a Department of Physics, University of Oxford, Parks Roads, Oxford OX1 3PU, England, and bDepartment of Earth Sciences, University of Oxford, Parks Roads, Oxford OX1 3PR, England
Correspondence e-mail:  glazer@physics.ox.ac.uk

References

First citation Agranovich, V. M. & Ginzburg, V. C. (1984). Crystal optics with spatial dispersion, and excitons. Berlin: Springer.Google Scholar
First citation Bloss, F. D. (1961). An introduction to the methods of optical crystallography. New York: Holt, Rinehart and Winston.Google Scholar
First citation Born, M. (1933). Dynamische Gittertheorie der Kristalle. In Handbuch der Physik, 24, 623–794.Google Scholar
First citation Born, M. & Wolf, E. (1993). Principles of optics. Sixth corrected edition. Oxford: Pergamon Press. Reissued (1999) by Cambridge University Press.Google Scholar
First citation Bragg, W. L. (1924). The refractive indices of calcite and aragonite. Proc. R. Soc. London Ser. A, 105, 370.Google Scholar
First citation Butcher, P. N. & Cotter, D. (1990). The elements of nonlinear optics. Cambridge University Press.Google Scholar
First citation Devarajan, V. & Glazer, A. M. (1986). Theory and computation of optical rotatory power in inorganic crystals. Acta Cryst. A42, 560–569.Google Scholar
First citation Ewald, P. P. (1916). Zur Begründung der Kristalloptik. Ann. Phys. (Leipzig), 49, 1–38, 117–143.Google Scholar
First citation Glazer, A. M. (2002). WINOPTACT: a computer program to calculate optical rotatory power and refractive indices from crystal structure data. J. Appl. Cryst. 35, 652.Google Scholar
First citation Glazer, A. M., Lewis, J. G. & Kaminsky, W. (1996). An automatic optical imaging system for birefringent media. Proc. R. Soc. London Ser. A, 452, 2751–2765.Google Scholar
First citation Glazer, A. M. & Stadnicka, K. (1986). On the origin of optical activity in crystal structures. J. Appl. Cryst. 19, 108–122.Google Scholar
First citation Glazer, A. M. & Stadnicka, K. (1989). On the use of the term `absolute' in crystallography. Acta Cryst. A45, 234–238.Google Scholar
First citation Groth, P. (1906–1919). Chemische Kristallographie. Vols. I-V. Leipzig: Engelmann.Google Scholar
First citation Hartshorne, N. H. & Stuart, A. (1970). Crystals and the polarising microscope. London: Arnold.Google Scholar
First citation Jona, F. & Shirane, G. (1962). Ferroelectric crystals. Oxford: Pergamon.Google Scholar
First citation Jones, R. C. (1948). A new calculus for the treatment of optical systems. VII. Properties of N-matrices. J. Opt. Soc. Am. 38, 671–685.Google Scholar
First citation Kaminow, I. P. (1974). An introduction to electro-optic devices. New York: Academic Press.Google Scholar
First citation Kerr, P. F. (1959). Optical mineralogy. New York: McGraw-Hill.Google Scholar
First citation Lines, M. E. & Glass, A. M. (1979). Principles and applications of ferroelectrics and related materials. Oxford: Clarendon.Google Scholar
First citation Lowry, T. M. (1935). Optical rotatory power. London: Longmans.Google Scholar
First citation Moxon, J. R. L. & Renshaw, A. R. (1990). The simultaneous measurement of optical activity and circular dichroism in birefringent linearly dichroic crystal sections: I. Introduction and description of the method. J. Phys. Condens. Matter, 2, 6807–6836.Google Scholar
First citation Moxon, J. R. L., Renshaw, A. R. & Tebbutt, I. J. (1991). The simultaneous measurement of optical activity and circular dichroism in birefringent linearly dichroic crystal sections: II. Description of the apparatus and results for quartz, nickel sulphate hexahydrate and benzil. J. Phys. D Appl. Phys. 24, 1187–1192.Google Scholar
First citation Narasimhamurty, T. S. (1981). Photoelastic and electro-optic properties of crystals. New York: Plenum.Google Scholar
First citation Nussbaum, A. & Phillips, R. A. (1976). Contemporary optics for scientists and engineers. New Jersey: Prentice Hall.Google Scholar
First citation Sapriel, J. (1976). Acousto-optics. Chichester: Wiley.Google Scholar
First citation Szivessy, G. & Münster, C. (1934). Über die Prüfung der Gitteroptik bei aktiven Kristallen. Ann. Phys. (Leipzig), 20, 703–736.Google Scholar
First citation Wahlstrom, E. E. (1959). Optical crystallography. New York: Wiley.Google Scholar
First citation Winchell, A. N. (1931). Microscopic characters of artificial inorganic solid substances or artificial minerals. New York: Wiley. [New edition (1964). New York: Academic Press.]Google Scholar
First citation Winchell, A. N. (1939). Elements of optical mineralogy, Part III. New York: Wiley.Google Scholar
First citation Winchell, A. N. (1951). Elements of optical mineralogy, Part II. New York: Wiley.Google Scholar
First citation Winchell, A. N. (1954). The optical properties of organic compounds. New York: Academic Press.Google Scholar
First citation Winchell, A. N. (1965). Optical properties of minerals. A determinative table. New York: Academic Press.Google Scholar
First citation Wood, I. G. & Glazer, A. M. (1980). Ferroelastic phase transition in BiVO4. I. Birefringence measurements using the rotating-analyser method. J. Appl. Cryst. 13, 217–223.Google Scholar
First citation Yariv, A. & Yeh, P. (1983). Optical waves in crystals. New York: Wiley.Google Scholar