International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.6, pp. 165-166

Section 1.6.4.14. Orientation studies

A. M. Glazera* and K. G. Coxb

a Department of Physics, University of Oxford, Parks Roads, Oxford OX1 3PU, England, and bDepartment of Earth Sciences, University of Oxford, Parks Roads, Oxford OX1 3PR, England
Correspondence e-mail:  glazer@physics.ox.ac.uk

1.6.4.14. Orientation studies

| top | pdf |

The full skills of the microscopist are required in the production of an accurate description of the optical orientation of a sample, that is the relationship of the indicatrix to the crystallographic axes.

It is best to start by determining the crystal system. Completely isotropic crystals are cubic, uniaxial crystals are tetragonal, trigonal or hexagonal, while biaxial crystals are orthorhombic, monoclinic or triclinic. Crystallographic features such as edges, faces, crystal outlines, shapes, cleavages and twin planes give the additional information required to subdivide the uniaxial and biaxial classes.

In uniaxial cases, a grain giving a centred optic axis figure is required. If the crystals look square, or have cleavages and/or twin planes intersecting at right angles, then the system is most likely to be tetragonal. Features disposed as equilateral triangles indicate triclinic, and hexagonal arrangements may indicate triclinic or hexagonal. The cases are often impossible to distinguish.

Orthorhombic crystals are usually fairly easy to identify because, although biaxial, they still show parallelism between many optical and crystallographic properties. For example, vibration directions commonly lie parallel to the traces of cleavage planes or crystal outlines (so-called straight extinction). Alternatively, vibration directions may bisect the angles between such features (symmetrical extinction). Furthermore, crystals with obviously special orientations can be identified, e.g. a section showing two sharply defined cleavages (i.e. lying at right angles to the plane of the slide) perhaps at right angles to each other, or producing a diamond pattern, is obviously cut normal to an important crystallographic direction, perhaps containing two of the crystallographic axes. The interference figure of such a section should be examined carefully as it is likely to be a centred version of the acute bisectrix, obtuse bisectrix or flash figure.

Monoclinic crystals are extremely common, and, while biaxial, do not generally show the parallelism of optical and crystallographic features typical of the orthorhombic system. There is no general recipe for success in determining the optical orientation of such crystals, other than systematic observation of crystals in different orientations. The most important observations are the relationships between extinction positions and crystallographic features, and the nature of the interference figures. All monoclinic crystals have one plane that, if at right angles to the slide, shows symmetrical or straight extinction. This plane is observed when the twofold symmetry axis lies in the plane of the slide. In crystals that show two cleavages, their intersection is also likely to mark a crystallographic axis. From consideration of such features it is often possible to identify a crucial special section, that lying perpendicular to the twofold axis. This is an important section, because two crystallographic axes now lie in the plane of the slide and their directions may be indicated by cleavage traces, crystal edges etc. Determination of the angles between vibration directions and supposed crystallographic axis directions then gives the important angle (e.g. nγ, c) which expresses the tilt of the indicatrix within the plane normal to the twofold axis.

If everything fails, and no relationship can be found between crystallographic and optical directions, the crystal is probably triclinic, and it is not possible to say very much about its orientation using the flat-stage microscope. Recourse must then be had to the universal stage, a device that allows rotation of the slide in three dimensions. This is rarely done these days.

Orientation studies are completed by assigning specific axes of the indicatrix to specific crystallographic axes. The identification of the principal axes of the indicatrix is easy. For example, in uniaxial cases, sections showing maximum birefringence contain the unique crystallographic axis, which is parallel to the [n_e] direction. Knowledge of the optic sign shows which of the two vibration directions coincides with [n_e], on the basis of being fast or slow. In biaxial cases, the maximum birefringence section has [n_\alpha] and [n_\gamma] lying in the plane of the slide, and of these [n_\gamma] corresponds of course to the slow ray. In biaxial crystals, the identification of the optic axial plane direction in a figure enables immediate identification of the [n_\beta] direction, which is normal to it.








































to end of page
to top of page