International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.7, p. 208

Section 1.7.3.3.4.2. SFG ([\omega_s+\omega_p=\omega_i]) with undepletion at [\omega_p]

B. Boulangera* and J. Zyssb

a Laboratoire de Spectrométrie Physique, Université Joseph Fourier, 140 avenue de la Physique, BP 87, 38 402 Saint-Martin-d'Hères, France, and bLaboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
Correspondence e-mail:  benoitb@satie-bourgogne.fr

1.7.3.3.4.2. SFG ([\omega_s+\omega_p=\omega_i]) with undepletion at [\omega_p]

| top | pdf |

[(\omega_s,\omega_p,\omega_i) = (\omega_1,\omega_2,\omega_3)] or [(\omega_2,\omega_1,\omega_3)].

The undepleted wave at ωp, the pump, is mixed in the nonlinear crystal with the depleted wave at ωs, the signal, in order to generate the idler wave at [\omega_i=\omega_s+\omega_p]. The integrations of the coupled amplitude equations over ([X,Y,Z]) with [E_s(X,Y,0)\ne 0], [E_p(X,Y,0)\ne 0], [\partial E_p(X,Y,Z)/\partial Z=0] and [E_i(X,Y,0)= 0] give[\eqalignno{P_p(L)&=T_p^2P_p(0)&(1.7.3.84)\cr P_i(L)&={\omega_i\over \omega_s}P_s(0)\Gamma^2L^2{\sin^2\{\Gamma^2L^2+[(\Delta k\cdot L)/2]^2\}^{1/2}\over \Gamma^2L^2+[(\Delta k\cdot L)/2]^2}&\cr&&(1.7.3.85)\cr P_s(L)&=P_s(0)\left[1-{\omega_s\over\omega_i}{P_i(L)\over P_s(0)}\right],&(1.7.3.86)}%fd1.7.3.86]with [\Delta k=k_i-(k_s+k_p)] and [\Gamma^2=[B_sP_p(0)]/w_o^2], where[B_s={8\pi\over\varepsilon_oc}{2N-1\over N}{d_{\rm eff}^2\over \lambda_s\lambda_i}{T_sT_pT_i\over n_sn_pn_i}.]Thus, even if the up-conversion process is phase-matched ([\Delta k=0]), the power transfers are periodic: the photon transfer efficiency is then 100% for [\Gamma L=(2m+1)(\pi/2)], where m is an integer, which allows a maximum power gain [\omega_i/\omega_s] for the idler. A nonlinear crystal with length [L = (\pi/2\Gamma)] is sufficient for an optimized device.

For a small conversion efficiency, i.e. ΓL weak, (1.7.3.85)[link] and (1.7.3.86)[link] become[P_i(L)\simeq P_s(0){\omega_i\over \omega_s}\Gamma^2L^2\sin c^2{\Delta k\cdot L\over2}\eqno(1.7.3.87)]and [P_s(L)\simeq P_s(0).\eqno(1.7.3.88)]The expression for Pi(L) with [\Delta k=0] is then equivalent to (1.7.3.83)[link] with [\omega_p = \omega_1] or [\omega_2], [\omega_i=\omega_3] and [\omega_s = \omega_2] or [\omega_1].

For example, the frequency up-conversion interaction can be of great interest for the detection of a signal, ωs, comprising IR radiation with a strong divergence and a wide spectral bandwidth. In this case, the achievement of a good conversion efficiency, Pi(L)/Ps(0), requires both wide spectral and angular acceptance bandwidths with respect to the signal. The double non-criticality in frequency and angle (DNPM) can then be used with one-beam non-critical non-collinear phase matching (OBNC) associated with vectorial group phase matching (VGPM) (Dolinchuk et al., 1994[link]): this corresponds to the equality of the absolute magnitudes and directions of the signal and idler group velocity vectors i.e. [{\rm d}\omega_i/{\rm d}{\bf k}_i={\rm d}\omega_s/{\rm d}{\bf k}_s].

References

First citation Dolinchuk, S. G., Kornienko, N. E. & Zadorozhnii, V. I. (1994). Noncritical vectorial phase matchings in nonlinear optics of crystals and infrared up-conversion. Infrared Phys. Technol. 35(7), 881–895.Google Scholar








































to end of page
to top of page