International Tables for Crystallography

Access to online content requires a licence


Transport properties
G. D. Mahan. International Tables for Crystallography (2006). Vol. D, ch. 1.8, pp. 220-227  [ doi:10.1107/97809553602060000635 ]

Abstract

The flow of either either electricity or heat is regarded as transport. These properties are of tensorial nature and are reviewed in this chapter. The topic is restricted to steady-state flows and to linear response. The three main transport coefficients are the electrical conductivity, the thermal conductivity and the Seebeck coefficient. Section 1.8.3 concerns the electrical resistivity of metals and semiconductors and the Hall effect. Section 1.8.4 concerns the thermal conductivity. Heat flow can be carried by two kinds of excitations: phonons and electrons. The cases of boundary scattering, impurity and defect scattering, isotope scattering and alloy scattering are distinguished as well as anharmonic interactions. The last section, Section 1.8.5, describes the properties of the Seebeck coefficient.


Access, prices and ordering

International Tables for Crystallography is available online as a full set of volumes through Wiley.

set

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

About International Tables for Crystallography

International Tables for Crystallography is the definitive resource and reference work for crystallography. The multi-volume series comprises articles and tables of data relevant to crystallographic research and to applications of crystallographic methods in all sciences concerned with the structure and properties of materials.