International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.9, pp. 228-242
https://doi.org/10.1107/97809553602060000636

Chapter 1.9. Atomic displacement parameters

W. F. Kuhsa*

a GZG Abt. Kristallographie, Goldschmidtstrasse 1, 37077 Göttingen, Germany
Correspondence e-mail: wkuhs1@gwdg.de

References

First citation Hazell, R. G. & Willis, B. T. M. (1978). Correlations between third cumulants in the refinement of noncentrosymmetric structures. Acta Cryst. A34, 809–811.Google Scholar
First citation Hummel, W., Raselli, A. & Bürgi, H.-B. (1990). Analysis of atomic displacement parameters and molecular motion in crystals. Acta Cryst. B46, 683–692.Google Scholar
First citation International Tables for Crystallography (2001). Vol. B. Reciprocal space, edited by U. Shmueli. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation International Tables for Crystallography (2004). Vol. C. Mathematical, physical and chemical tables, edited by E. Prince. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation International Tables for Crystallography (2005). Vol. A. Space-group symmetry, edited by Th. Hahn. Heidelberg: Springer.Google Scholar
First citation Jahn, H. A. (1949). Note on the Bhagavantam–Suryanarayana method of enumerating the physical constants of crystals. Acta Cryst. 2, 30–33.Google Scholar
First citation Johnson, C. K. (1965). ORTEP – a FORTRAN thermal ellipsoid plot program. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
First citation Johnson, C. K. (1970). Generalized treatments for thermal motion. In Thermal neutron diffraction, edited by B. T. M. Willis, pp. 132–160. Oxford University Press.Google Scholar
First citation Kuhs, W. F. (1983). Statistical description of multimodal atomic probability densities. Acta Cryst. A39, 148–158.Google Scholar
First citation Kuhs, W. F. (1984). Site-symmetry restrictions on thermal-motion-tensor coefficients up to rank 8. Acta Cryst. A40, 133–137.Google Scholar
First citation Kuhs, W. F. (1988). The anharmonic temperature factor in crystallographic structure analysis. Aust. J. Phys. 41, 369–382.Google Scholar
First citation Kuhs, W. F. (1992) Generalized atomic displacements in crystallographic structure analysis. Acta Cryst. A48, 80–98.Google Scholar
First citation Kuznetsov, P. I., Stratonovich, R. L. & Tikhonov, V. I. (1960). Quasi-moment functions in the theory of random processes. Theory Probab. Its Appl. (USSR), 5, 80–97.Google Scholar
First citation Levy, H. A. (1956). Symmetry relations among coefficients of the anisotropic temperature factor. Acta Cryst. 9, 679.Google Scholar
First citation Nelmes, R. J. (1969). Representational surfaces for thermal motion. Acta Cryst. A25, 523–526.Google Scholar
First citation Pach, K. & Frey, T. (1964). Vector and tensor analysis. Budapest: Terra.Google Scholar
First citation Peterse, W. J. A. M. & Palm, J. H. (1966). The anisotropic temperature factor of atoms in special positions. Acta Cryst. 20, 147–150.Google Scholar
First citation Scheringer, C. (1985). A deficiency of the cumulant expansion of the anharmonic temperature factor. Acta Cryst. A41, 79–81.Google Scholar
First citation Sirotin, Yu. I. (1960). Group tensor spaces. Sov. Phys. Crystallogr. 5, 157–165.Google Scholar
First citation Sirotin, Yu. I. (1961). Plotting tensors of a given symmetry. Sov. Phys. Crystallogr. 6, 263–271.Google Scholar
First citation Smith, V. H. Jr, Price, P. F. & Absar, I. (1977). Representations of electron density and its topographical features. Isr. J. Chem. 16, 187–197.Google Scholar
First citation Trueblood, K. N., Bürgi, H.-B., Burzlaff, H., Dunitz, J. D., Gramaccioli, C. M., Schulz, H. H., Shmueli, U. & Abrahams, S. C. (1996). Atomic displacement parameter nomenclature. Report of a subcommittee on atomic displacement parameter nomenclature. Acta Cryst. A52, 770–781.Google Scholar
First citation Willis, B. T. M. & Pryor, A. W. (1975). Thermal vibrations in crystallography. Cambridge University Press. Google Scholar
First citation Wondratschek, H. (1958). Über die Möglichkeit der Beschreibung kristallphysikalischer Eigenschaften durch Flächen. Z. Kristallogr. 110, 127–135. Google Scholar
First citation Zucker, U. H. & Schulz, H. (1982a). Statistical approaches for the treatment of anharmonic thermal motion in crystals. I. A comparison of the most frequently used formalisms of anharmonic thermal vibrations. Acta Cryst. A38, 563–568.Google Scholar
First citation Zucker, U. H. & Schulz, H. (1982b). Statistical approaches for the treatment of anharmonic thermal motion in crystals. II. Anharmonic thermal vibrations and effective atomic potentials in the fast ionic conductor lithium nitride Li3N. Acta Cryst. A38, 568–576.Google Scholar