International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 3.1, p. 347

Section 3.1.2.5.1. Nature of the groups and of their irreducible representations

J.-C. Tolédanod*

3.1.2.5.1. Nature of the groups and of their irreducible representations

| top | pdf |

The phases considered being crystalline, their invariance groups, G or F, coincide with crystallographic space groups. Let us only recall here that each of these groups of infinite order is constituted by elements of the form [\{R |{\bf t}\}] where R is a point-symmetry operation and t a translation. The symmetry operations R generate the point group of the crystal. On the other hand, among the translations t there is a subset forming an infinite group of `primitive' translations T generating the three-dimensional Bravais lattice of the crystal.

For a space group G, there is an infinite set of unequivalent irreducible representations. An introduction to their properties can be found in Chapter 1.2[link] as well as in a number of textbooks. They cannot be tabulated in a synthetic manner as the better-known representations of finite groups. They have to be constructed starting from simpler representations. Namely, each representation is labelled by a double index.

  • (i) The first index is a k vector in reciprocal space, belonging to the first Brillouin zone of this space. The former vector defines a subgroup [G({\bf k})] of G. This group is the set of elements [\{R |{\bf t}\}] of G whose component R leaves k unmoved, or transforms it into an `equivalent' vector (i.e. differing from k by a reciprocal-lattice vector). The group [G({\bf k})] has irreducible representations labelled [\tau_m ({\bf k})] of dimension [n_m] which are defined in available tables.

  • (ii) A representation of G can be denoted [\Gamma_{{\bf k}, m}]. It can be constructed according to systematic rules on the basis of the knowledge of [\tau_m ({\bf k})]. Its dimension is [n_m r] where r is the number of vectors in the `star' of k. This star is the set of vectors, unequivalent to k, having the same modulus as k and obtained from k by application of all the point-symmetry elements R of G.








































to end of page
to top of page