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3.1.3. Equitranslational phase transitions. Property tensors at
ferroic phase transitions

By V. Janovec and V. Kopský

In the Landau theory, presented in the preceding Section 3.1.2,
symmetry considerations and thermodynamics are closely inter-
woven. These two aspects can be, at least to some extent,
disentangled and some basic symmetry conditions formulated
and utilized without explicitly invoking thermodynamics. State-
ments which follow directly from symmetry are exact but usually
do not yield numerical results. These can be obtained by a
subsequent thermodynamic or statistical treatment.

The central point of this section is Table 3.1.3.1, which contains
results of symmetry analysis for a large class of equitranslational
phase transitions and presents data on changes of property
tensors at most ferroic phase transitions. Notions and statements
relevant to these two applications are explained in Sections
3.1.3.1 and 3.1.3.2, respectively. Table 3.1.3.1 with a detailed
explanation is displayed in Section 3.1.3.3. Examples illustrating
possible uses of the table are given in Section 3.1.3.4.

3.1.3.1. Equitranslational phase transitions and their order
parameters

A basic role is played in symmetry considerations by the
relation between the space group G of the high symmetry parent
or prototype phase, the space group F of the low-symmetry
ferroic phase and the order parameter �: The low-symmetry
group F consists of all operations of the high-symmetry group G

that leave the order parameter � invariant. By the term order
parameter we mean the primary order parameter, i.e. that set of
degrees of freedom whose coefficient of the quadratic invariant
changes sign at the phase-transition temperature (see Sections
3.1.2.2.4 and 3.1.2.4.2).

What matters in these considerations is not the physical nature
of � but the transformation properties of �, which are expressed
by the representation �� of G. The order parameter � with d�

components can be treated as a vector in a d�-dimensional carrier
space V� of the representation ��, and the low-symmetry group
F comprises all operations of G that do not change this vector. If
�� is a real one-dimensional representation, then the low-
symmetry group F consists of those operations g 2 G for which
the matrices Dð�ÞðgÞ [or characters ��ðgÞ] of the representation ��

equal one, Dð�ÞðgÞ ¼ ��ðgÞ ¼ 1. This condition is satisfied by one
half of all operations of G (index of F in G is two) and thus the
real one-dimensional representation �� determines the ferroic
group F unambiguously.

A real multidimensional representation �� can induce several
low-symmetry groups. A general vector of the carrier space V� of
�� is invariant under all operations of a group Ker ��, called the
kernel of representation ��, which is a normal subgroup of G

comprising all operations g 2 G for which the matrix Dð�ÞðgÞ is the
unit matrix. Besides that, special vectors of V� – specified by
relations restricting values of order-parameter components (e.g.
some components of � equal zero, some components are equal
etc.) – may be invariant under larger groups than the kernel
Ker ��. These groups are called epikernels of �� (Ascher &
Kobayashi, 1977). The kernel and epikernels of �� represent
potential symmetries of the ferroic phases associated with the
representation ��. Thermodynamic considerations can decide
which of these phases is stable at a given temperature and
external fields.

Another fundamental result of the Landau theory is that
components of the order parameter of all continuous (second-
order) and some discontinuous (first-order) phase transitions
transform according to an irreducible representation of the space
group G of the high-symmetry phase (see Sections 3.1.2.4.2 and
3.1.2.3). Since the components of the order parameter are real
numbers, this condition requires irreducibility over the field of

real numbers (so-called physical irreducibility or R-irreducibility).
This means that the matrices Dð�ÞðgÞ of R-irreducible repre-
sentations (abbreviated R-ireps) can contain only real numbers.
(Physically irreducible matrix representations are denoted by
Dð�Þ instead of the symbol �� used in general considerations.)

As explained in Section 1.2.3 and illustrated by the example of
gadolinium molybdate in Section 3.1.2.5, an irreducible repre-
sentation �k;m of a space group is specified by a vector k of the
first Brillouin zone, and by an irreducible representation �mðkÞ of
the little group of k, denoted GðkÞ. It turns out that the vector k
determines the change of the translational symmetry at the phase
transition (see e.g Tolédano & Tolédano, 1987; Izyumov &
Syromiatnikov, 1990; Tolédano & Dmitriev, 1996). Thus, unless
one restricts the choice of the vector k, one would have an infinite
number of phase transitions with different changes of the trans-
lational symmetry.

In this section, we restrict ourselves to representations with
zero k vector (this situation is conveniently denoted as the �
point). Then there is no change of translational symmetry at the
transition. In this case, the group F is called an equitranslational
or translationengleiche (t) subgroup of G, and this change of
symmetry will be called an equitranslational symmetry descent
G +

t
F . An equitranslational phase transition is a transition with

an equitranslational symmetry descent G +
t
F .

Any ferroic space-group-symmetry descent G + F uniquely
defines the corresponding symmetry descent G + F, where G and
F are the point groups of the space groups G and F , respectively.
Conversely, the equitranslational subgroup F of a given space
group G is uniquely determined by the point-group symmetry
descent G + F, where G and F are point groups of space groups
G and F , respectively. In other words, a point-group symmetry
descent G + F defines the set of all equitranslational space-group
symmetry descents G +

t
F , where G runs through all space

groups with the point group G. All equitranslational space-group
symmetry descents G +

t
F are available in the software

GI?KoBo-1, where more details about the equitranslational
subgroups can also be found.

Irreducible and reducible representations of the parent point
group G are related in a similar way to irreducible representa-
tions with vector k ¼ 0 for all space groups G with the point
group G by a simple process called engendering (Jansen & Boon,
1967). The translation subgroup TG of G is a normal subgroup and
the point group G is isomorphic to a factor group G=TG. This
means that to every element g 2 G there correspond all elements
fgjt þ uGðgÞg of the space group G with the same linear consti-
tuent g, the same non-primitive translation uGðgÞ and any vector t
of the translation group TG (see Section 1.2.3.1). If a repre-
sentation of the point group G is given by matrices DðgÞ, then the
corresponding engendered representation of a space group G

with vector k ¼ 0 assigns the same matrix DðgÞ to all elements
fgjt þ uGðgÞg of G.

From this it further follows that a representation �� of a point
group G describes transformation properties of the primary
order parameter for all equitranslational phase transitions with
point-symmetry descent G + F. This result is utilized in the
presentation of Table 3.1.3.1.

3.1.3.2. Property tensors at ferroic phase transitions. Tensor
parameters

The primary order parameter expresses the ‘difference’
between the low-symmetry and high-symmetry structures and
can be, in a microscopic description, identified with spontaneous
displacements of atoms (frozen in soft mode) or with an increase
of order of molecular arrangement. To find a microscopic inter-
pretation of order parameters, it is necessary to perform mode
analysis (see e.g. Rousseau et al., 1981; Aroyo & Perez-Mato,
1998), which takes into account the microscopic structure of the
parent phase.
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3.1. STRUCTURAL PHASE TRANSITIONS

Physical properties of crystals in a continuum description are
described by physical property tensors (see Section 1.1.1.2), for
short property tensors [equivalent expressions are matter tensors
(Nowick, 1995; Wadhawan, 2000) or material tensors (Shuvalov,
1988)]. Property tensors are usually expressed in a Cartesian
(rectangular) coordinate system [in Russian textbooks called a
crystallophysical system of coordinates (Sirotin & Shaskolskaya,
1982; Shuvalov, 1988)] which is related to the crystallographic
coordinate system (IT A, 2002) by convention (see IEEE Stan-
dard on Piezoelectricity, 1987; Sirotin & Shaskolskaya, 1982;
Shuvalov, 1988). In what follows, Cartesian coordinates will mean
coordinates in the crystallophysical system and tensor compo-
nents will mean components in this coordinate system.

As explained in Section 1.1.4, the number of independent
components of property tensors depends on the point-group
symmetry of the crystal: the higher this symmetry is, the smaller
this number is. Lowering of point-group symmetry at ferroic
phase transitions is, therefore, always accompanied by an
increased number of independent components of some property
tensors. This effect manifests itself by the appearance of morphic
(Strukov & Levanyuk, 1998) or spontaneous tensor components,
which are zero in the parent phase and nonzero in the ferroic
phase, and/or by symmetry-breaking increments of nonzero
components in the ferroic phase that break relations between
these tensor components which hold in the parent phase. Thus,
for example, the strain tensor has two independent components
u11 ¼ u22; u33 in a tetragonal phase and four independent
components u11 6¼ u22; u33; u12 in a monoclinic phase. In a tetra-
gonal-to-monoclinic phase transition there is one morphic
component u12 and one relation u11 ¼ u22 is broken by the
symmetry-breaking increment �u11 ¼ ��u22.

Changes of property tensors at a ferroic phase transition can
be described in an alternative manner in which no symmetry-
breaking increments but only morphic terms appear. As we have
seen, the transformation properties of the primary order para-
meter � are described by a d�-dimensional R-irreducible matrix
representation Dð�Þ of the group G. One can form d� linear
combinations of Cartesian tensor components that transform
according to the same representation Dð�Þ. These linear combi-
nations will be called components of a principal tensor parameter
of the ferroic phase transition with a symmetry descent G + F.
Equivalent designations are covariant tensor components
(Kopský, 1979a) or symmetry coordinates (Nowick, 1995) of
representation �� of group G. Unlike the primary order para-
meter of a ferroic phase transition, a principal tensor parameter is
not uniquely defined since one can always form further principal
tensor parameters from Cartesian components of higher-rank
tensors. However, only the principal tensor parameters formed
from components of one, or even several, property tensors up to
rank four are physically significant.

A principal tensor parameter introduced in this way has the
same basic properties as the primary order parameter: it is zero in
the parent phase and nonzero in the ferroic phase, and trans-
forms according to the same R-irep Dð�Þ. However, these two
quantities have different physical nature: the primary order
parameter of an equitranslational phase transition is a homo-
geneous microscopic distortion of the parent phase, whereas the
principal tensor parameter describes the macroscopic manifes-
tation of this microscopic distortion. Equitranslational phase
transitions thus possess the unique property that their primary
order parameter can be represented by principal tensor para-
meters which can be identified and measured by macroscopic
techniques.

If the primary order parameter transforms as a vector, the
corresponding principal tensor parameter is a dielectric polar-
ization (spontaneous polarization) and the equitranslational
phase transition is called a proper ferroelectric phase transition.
Similarly, if the primary order parameter transforms as compo-
nents of a symmetric second-rank tensor, the corresponding

principal tensor parameter is a spontaneous strain (or sponta-
neous deformation) and the equitranslational phase transition is
called a proper ferroelastic phase transition.

A conspicuous feature of equitranslational phase transitions is
a steep anomaly (theoretically an infinite singularity for contin-
uous transitions) of the generalized susceptibility associated with
the primary order parameter, especially the dielectric suscept-
ibility near a proper ferroelectric transition (see Section 3.1.2.2.5)
and the elastic compliance near a proper ferroelastic transition
(see e.g. Tolédano & Tolédano, 1987; Tolédano & Dmitriev, 1996;
Strukov & Levanyuk, 1998).

Any symmetry property of a ferroic phase transition has its
pendant in domain structure. Thus it appears that any two ferroic
single domain states differ in the values of the principal tensor
parameters, i.e. principal tensor parameters ensure tensor
distinction of any two ferroic domain states. If, in particular, the
principal order parameter is polarization, then any two ferroic
domain states differ in the direction of spontaneous polarization.
Such a ferroic phase is called a full ferroelectric phase (Aizu,
1970). In this case, the number of ferroic domain states equals the
number of ferroelectric domain states. Similarly, if any two ferroic
domain states exhibit different spontaneous strain, then the
ferroic phase is a full ferroelastic phase. An equivalent condition
is an equal number of ferroic and ferroelastic domain states (see
Sections 3.4.2.1 and 3.4.2.2).

The principal tensor parameters do not cover all changes of
property tensors at the phase transition. Let Dð�Þ be a d�-
dimensional matrix R-irep of G with an epikernel (or kernel) L
which is an intermediate group between F and G, in other words,
L is a supergroup of F and a subgroup of G,

F � L � G: ð3:1:3:1Þ

This means that a vector � of the d�-dimensional carrier space V�

of Dð�Þ is invariant under operations of L. The vector � specifies a
secondary order parameter of the transition, i.e. � is a morphic
quantity, the appearance of which lowers the symmetry from G to
L (for more details on secondary order parameters see Tolédano
& Tolédano, 1987; Tolédano & Dmitriev, 1996). Intermediate
groups (3.1.3.1) can be conveniently traced in lattices of
subgroups displayed in Figs. 3.1.3.1 and 3.1.3.2.

One can form linear combinations of Cartesian tensor
components that transform according to Dð�Þ. These combina-
tions are components of a secondary tensor parameter which
represents a macroscopic appearance of the secondary order
parameter �.

If a secondary tensor parameter is a spontaneous polarization
and no primary order parameter with this property exists, the
phase transition is called an improper ferroelectric phase transi-
tion (Dvořák, 1974; Levanyuk & Sannikov, 1974). Similarly, an
improper ferroelastic phase transition is specified by existence of a
secondary tensor parameter that transforms as components of
the symmetric second-rank tensor (spontaneous strain) and by
absence of a primary order parameter with this property. Unlike
proper ferroelectric and proper ferroelastic phase transitions,
which are confined to equitranslational phase transitions, the
improper ferroelectric and improper ferroelastic phase transi-
tions appear most often in non-equitranslational phase transi-
tions. Classic examples are an improper ferroelectric phase
transition in gadolinium molybdate (see Section 3.1.2.5.2) and an
improper ferroelastic phase transition in strontium titanate (see
Section 3.1.5.2.3). Examples of equitranslational improper
ferroelectric and ferroelastic symmetry descents can be found in
Table 3.1.3.2.

Secondary tensor parameters and corresponding suscept-
ibilities exhibit less pronounced changes near the transition than
those associated with the primary order parameter (see e.g.
Tolédano & Tolédano, 1987; Tolédano & Dmitriev, 1996; Strukov
& Levanyuk, 1998).
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Table 3.1.3.1. Point-group symmetry descents associated with irreducible representations

Property tensors that appear in this table: " enantiomorphism, chirality; Pi dielectric polarization; u� strain; g� optical activity; di� piezoelectric tensor; Ai�

electrogyration tensor; ��	 piezo-optic tensor (i ¼ 1; 2; 3; �; 	 ¼ 1; 2; . . . ; 6). Applications of this table to symmetry analysis of equitranslational phase transitions and
to changes of property tensors at ferroic transitions are explained in Section 3.1.3.3.

(a) Triclinic parent groups

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 1 C1

No ferroic symmetry descent

Parent symmetry G: 1 Ci

Au x�
1 1 C1 1 All components of odd parity tensors 2 1 2

(b) Monoclinic parent groups

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 2z C2z

B x3 1 C1 1 P1, P2; u4; u5 2 2 2

Parent symmetry G: mz Csz

A00 x3 1 C1 1 "; P3; u4; u5 2 2 2

Parent symmetry G: 2z=mz C2hz

Bg xþ
3 1 Ci 1 u4; u5 2 2 0

Au x�
1 2z C2z 1 "; P3 2 1 2

Bu x�
3 mz Csz 1 P1;P2 2 1 2

(c) Orthorhombic parent groups

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 2x2y2z D2

B1g x2 2z C2z 1 P3; u6 2 2 2
B3g x3 2x C2x 1 P1; u4 2 2 2
B2g x4 2y C2y 1 P2; u5 2 2 2

Parent symmetry G: mxmy2z C2vz

A2 x2 2z C2z 1 u6 2 2 1
B2 x3 mx Csx 1 P2; u4 2 2 2
B1 x4 my Csy 1 P1; u5 2 2 2

Parent symmetry G: mxmymz D2h

B1g xþ
2 2z=mz C2hz 1 u6 2 2 0

B3g xþ
3 2x=mx C2hx 1 u4 2 2 0

B2g xþ
4 2y=my C2hy 1 u5 2 2 0

A1u x�
1 2x2y2z D2 1 "; g1, g2, g3; d14, d25, d36 2 1 0

B1u x�
2 mxmy2z C2vz 1 P3 2 1 2

B3u x�
3 2xmymz C2vx 1 P1 2 1 2

B2u x�
4 mx2ymz C2vy 1 P2 2 1 2

(d) Tetragonal parent groups

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 4z C4z

B x3 2z C2z 1 �u1 ¼ ��u2, u6 2 2 1

1E � 2 E ðx1; y1Þ 1 C1 1 ðP1;P2Þ; ðu4;�u5Þ 4 4 4
(Li)

Parent symmetry G: 4z S4z

B x3 2z C2z 1 "; P3; �u1 ¼ ��u2, u6 2 2 2

1E � 2 E ðx1; y1Þ 1 C1 1 ðP1;�P2Þ; ðu4;�u5Þ 4 4 4

Parent symmetry G: 4z=mz C4hz

Bg xþ
3 2z=mz C2hz 1 �u1 ¼ ��u2, u6 2 2 0

Au x�
1 4z C4z 1 "; P3 2 1 2

Bu x�
3 4z S4z 1 g1 ¼ �g2, g6; d31 ¼ �d32, d36, d14 ¼ d25, d15 ¼ �d24 2 1 0

1Eg � 2 Eg ðxþ1 ; yþ1 Þ 1 Ci 1 ðu4;�u5Þ 4 4 0

1Eu � 2 Eu ðx�1 ; y�1 Þ mz Csz 1 ðP1;P2Þ 4 2 4
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Table 3.1.3.1 (cont.)

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 4z2x2xy D4z

A2 x2 4z C4z 1 P3 2 1 2
B1 x3 2x2y2z D2 1 �u1 ¼ ��u2 2 2 0
B2 x4 2xy2xy2z D̂D2z 1 u6 2 2 0

E ðx1; 0Þ 2x C2x 2 P1; u4 4 4 4
ðx1; x1Þ 2xy C2xy 2 P1 ¼ P2; u4 ¼ �u5 4 4 4

(Li) ðx1; y1Þ 1 C1 1 ðP1;P2Þ; ðu4;�u5Þ 8 8 8

Parent symmetry G: 4zmxmxy C4vz

A2 x2 4z C4z 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 1
B1 x3 mxmy2z C2vz 1 �u1 ¼ ��u2 2 2 1
B2 x4 mxymxy2z ĈC2vz 1 u6 2 2 1

E ðx1; 0Þ mx Csx 2 P2; u4 4 4 4
ðx1; x1Þ mxy Csxy 2 P2 ¼ �P1; u4 ¼ �u5 4 4 4
ðx1; y1Þ 1 C1 1 ðP2;�P1Þ; ðu4;�u5Þ 8 8 8

Parent symmetry G: 4z2xmxy D2dz

A2 x2 4z S4z 1 g6; d31 ¼ �d32, d15 ¼ �d24 2 1 0
B1 x3 2x2y2z D2 1 "; �u1 ¼ ��u2 2 2 0
B2 x4 mxymxy2z ĈC2vz 1 P3; u6 2 2 2

E ðx1; 0Þ 2x C2x 2 P1; u4 4 4 4
ðx1; x1Þ mxy Csxy 2 P1 ¼ �P2; u4 ¼ �u5 4 4 4
ðx1; y1Þ 1 C1 1 ðP1;�P2Þ; ðu4;�u5Þ 8 8 8

Parent symmetry G: 4zmx2xy D̂D2dz

A2 x2 4z S4z 1 g1 ¼ �g2; d36, d14 ¼ d25 2 1 0
B2 x3 mxmy2z C2vz 1 P3; �u1 ¼ ��u2 2 2 2
B1 x4 2xy2xy2z D̂D2z 1 "; u6 2 2 0

E ðx1; 0Þ mx Csx 2 P2; u4 4 4 4
ðx1; x1Þ 2xy C2xy 2 P2 ¼ P1; u4 ¼ �u5 4 4 4
ðx1; y1Þ 1 C1 1 ðP2;P1Þ; ðu4;�u5Þ 8 8 8

Parent symmetry G: 4z=mzmxmxy D4hz

A2g xþ
2 4z=mz C4hz 1 A31 ¼ A32, A33, A15 ¼ A24 2 1 0

B1g xþ
3 mxmymz D2h 1 �u1 ¼ ��u2 2 2 0

B2g xþ
4 mxymxymz D̂D2hz 1 u6 2 2 0

A1u x�
1 4z2x2xy D4z 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 0

A2u x�
2 4zmxmxy C4vz 1 P3 2 1 2

B1u x�
3 4z2xmxy D2dz 1 g1 ¼ �g2; d14 ¼ d25, d36 2 1 0

B2u x�
4 4zmx2xy D̂D2dz 1 g6; d31 ¼ �d32, d15 ¼ �d24 2 1 0

Eg ðxþ1 ; 0Þ 2x=mx C2hx 2 u4 4 4 0
ðxþ1 ; xþ1 Þ 2xy=mxy C2hxy 2 u4 ¼ �u5 4 4 0
ðxþ1 ; yþ1 Þ 1 Ci 1 ðu4;�u5Þ 8 8 0

Eu ðx�1 ; 0Þ 2xmymz C2vx 2 P1 4 2 4
ðx�1 ; x�1 Þ mxy2xymz C2vxy 2 P1 ¼ P2 4 2 4
ðx�1 ; y�1 Þ mz Csz 1 ðP1;P2Þ 8 8 8

(e) Trigonal parent groups

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 3z C3

E ðx1; y1Þ 1 C1 1 (P1, P2) 3 3 3
(u1 � u2, �2u6), (u4, �u5)

(La, Li) �u1 ¼ ��u2

Parent symmetry G: 3z C3i

Au x�
1 3z C3 1 "; P3 2 1 2

Eg ðxþ1 ; yþ1 Þ 1 Ci 1 (u1 � u2, �2u6), (u4, �u5) 3 3 0
(La) �u1 ¼ ��u2

Eu ðx�1 ; y�1 Þ 1 C1 1 (P1, P2) 6 3 6

Parent symmetry G: 3z2x D3x

A2 x2 3z C3 1 P3 2 1 2

E ðx1; 0Þ 2x C2x 3 P1; �u1 ¼ ��u2, u4 3 3 3
(La, Li) ðx1; y1Þ 1 C1 1 (P1, P2); (u1 � u2, �2u6), (u4, �u5) 6 6 6

Parent symmetry G: 3zmx C3vx

A2 x2 3z C3 1 "; g1 ¼ g2, g3; d11 ¼ �d12 ¼ �d26, d14 ¼ �d25 2 1 1

E ðx1; 0Þ mx Csx 3 P2; �u1 ¼ ��u2, u4 3 3 3
(La) ðx1; y1Þ 1 C1 1 (P2, �P1); (u1 � u2, �2u6), (u4, �u5) 6 6 6
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Table 3.1.3.1 (cont.)

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 3zmx D3dx

A2g xþ
2 3z C3i 1 A22 ¼ �A21 ¼ �A16, A31 ¼ A32, A33, A15 ¼ A24 2 1 0

A1u x�
1 3z2x D3x 1 "; g1 ¼ g2, g3; d11 ¼ �d12 ¼ �d26, d14 ¼ �d25 2 1 0

A2u x�
2 3zmx C3vx 1 P3 2 1 2

Eg ðxþ1 ; 0Þ 2x=mx C2hx 3 �u1 ¼ ��u2, u4 3 3 0
(La) ðxþ1 ; yþ1 Þ 1 Ci 1 (u1 � u2, �2u6), (u4, �u5) 6 6 0

Eu ð0; y�1 Þ mx Csx 3 P2 6 3 6
ðx�1 ; 0Þ 2x C2x 3 P1 6 3 6
ðx�1 ; y�1 Þ 1 C1 1 (P1, P2) 12 6 12

Parent symmetry G: 3z2y D3y

A2 x2 3z C3 1 P3 2 1 2

E ð0; y1Þ 2y C2y 3 P2; �u1 ¼ ��u2, u5 3 3 3
(La, Li) ðx1; y1Þ 1 C1 1 (P1, P2); (2u6, u1 � u2), (u4, �u5) 6 6 6

Parent symmetry G: 3zmy C3vy

A2 x2 3z C3 1 "; g1 ¼ g2, g3; d22 ¼ �d21 ¼ �d16, d14 ¼ �d25 2 1 1

E ð0; y1Þ my Csy 3 P1; �u1 ¼ ��u2, u5 3 3 3
(La) ðx1; y1Þ 1 C1 1 (P2, �P1); (2u6, u1 � u2), (u4, �u5) 6 6 6

Parent symmetry G: 3zmy D3dy

A2g xþ
2 3z C3i 1 A11 ¼ �A12 ¼ �A26, A31 ¼ A32, A33, A15 ¼ A24 2 1 0

A1u x�
1 3z2y D3y 1 "; g1 ¼ g2, g3; d22 ¼ �d21 ¼ �d16, d14 ¼ �d25 2 1 0

A2u x�
2 3zmy C3vy 1 P3 2 1 2

Eg ð0; yþ1 Þ 2y=my C2hy 3 �u1 ¼ ��u2, u5 3 3 0
(La) ðxþ1 ; yþ1 Þ 1 Ci 1 (2u6, u1 � u2), (u4, �u5) 6 6 0

Eu ð0; y�1 Þ 2y C2y 3 P2 6 3 6
ðx�1 ; 0Þ my Csy 3 P1 6 3 6
ðx�1 ; y�1 Þ 1 C1 1 (P1, P2) 12 6 12

(f) Hexagonal parent groups
Covariants with standardized labels and conversion equations:

g�1 ¼ g1 þ g2; g�2x ¼ g1 � g2; g�2y ¼ 2g6

g1 ¼
1
2 ðg

�
1 þ g�2xÞ; g2 ¼

1
2 ðg

�
1 � g�2xÞ; �g1 ¼ ��g2 ¼

1
2 g�2x

d�
1 ¼ d14 � d25; d�

2x;2 ¼ d14 þ d25; d�
2y;2 ¼ d24 � d15

d�
2;1 ¼ d31 þ d32; d�

2x;1 ¼ 2d36; d�
2y;1 ¼ d32 � d31

d14 ¼
1
2 ðd

�
1 þ d�

2x;2Þ; d25 ¼
1
2 ð�d�

1 þ d�
2x;2Þ; �d14 ¼ �d25 ¼

1
2 d�

2x

d36 ¼
1
2 d�

2x;1; d31 ¼
1
2 ðd

�
2;1 � d�

2y;1Þ; d32 ¼
1
2 ðd

�
2;1 þ d�

2y;1Þ:

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 6z C6

B x3 3z C3 1 d11 ¼ �d12 ¼ �d26, d22 ¼ �d21 ¼ �d16 2 1 1

E2 ðx2; y2Þ 2z C2z 1 (u1 � u2, 2u6) �u1 ¼ ��u2 3 3 1
(La, Li)

E1 ðx1; y1Þ 1 C1 1 (P1,P2) 6 6 6
(Li) (u4, �u5)

Parent symmetry G: 6z C3h

A00 x3 3z C3 1 "; P3 2 1 2

E0 ðx2; y2Þ mz Csz 1 (P2, P1) 3 3 3
(La) (u1 � u2, 2u6) �u1 ¼ ��u2

E00 ðx1; y1Þ 1 C1 1 (u4, �u5) 6 6 6

Parent symmetry G: 6z=mz C6h

Bg xþ
3 3z C3i 1 A11 ¼ �A12 ¼ �A26, A22 ¼ �A21 ¼ �A16 2 1 0

Au x�
1 6z C6 1 "; P3 2 1 2

Bu x�
3 6z C3h 1 d11 ¼ �d12 ¼ �d26, d22 ¼ �d21 ¼ �d16 2 1 0

E2g ðxþ2 ; yþ2 Þ 2z=mz C2hz 1 (u1 � u2, 2u6) �u1 ¼ ��u2 3 3 0
(La)

E1g ðxþ1 ; yþ1 Þ 1 Ci 1 (u4, �u5) 6 6 0

E2u ðx�2 ; y�2 Þ 2z C2z 1 (g1 � g2, 2g6) g1 ¼ �g2, g6 6 3 2
(2d36, d32 � d31) d32 ¼ �d31, d36

(d14 þ d25, d24 � d15) d14 ¼ d25, d24 ¼ �d15

E1u ðx�1 ; y�1 Þ mz Csz 1 (P1, P2) 6 3 6
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In tensor distinction of domains, the secondary tensor para-
meters play a secondary role in a sense that some but not all
ferroic domain states exhibit different values of the secondary
tensor parameters. This property forms a basis for the concept of
partial ferroic phases (Aizu, 1970): A ferroic phase is a partial
ferroelectric (ferroelastic) one if some but not all domain states
differ in spontaneous polarization (spontaneous strain). A non-
ferroelectric phase denotes a ferroic phase which is either non-
polar or which possesses a unique polar direction available

already in the parent phase. A non-ferroelastic phase exhibits no
spontaneous strain.

3.1.3.3. Tables of equitranslational phase transitions associated
with irreducible representations

The first systematic symmetry analysis of Landau-type phase
transitions was performed by Indenbom (1960), who found all
equitranslational phase transitions that can be accomplished
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Table 3.1.3.1 (cont.)

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 6z2x2y D6

A2 x2 6z C6 1 P3 2 1 2
B1 x3 3z2x D3x 1 d11 ¼ �d12 ¼ �d26 2 1 0
B2 x4 3z2y D3y 1 d22 ¼ �d21 ¼ �d16 2 1 0

E2 ðx2; 0Þ 2x2y2z D2 3 �u1 ¼ ��u2 3 3 0
(La, Li) ðx2; y2Þ 2z C2z 1 (u1 � u2, 2u6) 6 6 2

E1 ðx1; 0Þ 2x C2x 3 P1; u4 6 6 6
ð0; y1Þ 2y C2y 3 P2; u5 6 6 6

(Li) ðx1; y1Þ 1 C1 1 (P1, P2); (u4, �u5Þ 12 12 12

Parent symmetry G: 6zmxmy C
6v

A2 x2 6z C6 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 1
B2 x3 3zmx C3vx 1 d22 ¼ �d21 ¼ �d16 2 1 1
B1 x4 3zmy C3vy 1 d11 ¼ �d12 ¼ �d26 2 1 1

E2 ðx2; 0Þ mxmy2z C2vz 3 �u1 ¼ ��u2 3 3 1
(La) ðx2; y2Þ 2z C2z 1 (u1 � u2, 2u6) 6 6 1

E1 ðx1; 0Þ mx Csx 3 P2; u4 6 6 6
ð0; y1Þ my Csy 3 P1; u5 6 6 6
ðx1; y1Þ 1 C1 1 (P2, �P1); (u4, �u5) 12 12 12

Parent symmetry G: 6z2xmy D
3h

A0
2 x2 6z C3h 1 d22 ¼ �d21 ¼ �d16 2 1 0

A00
1 x3 3z2x D3x 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 0

A00
2 x4 3zmy C3vy 1 P3 2 1 2

E0 ðx2; 0Þ 2xmymz C2vx 3 P1; �u1 ¼ ��u2 3 3 3
(La) ðx2; y2Þ mz Csz 1 (P1,�P2); (u1 � u2, 2u6) 6 6 6

E00 ðx1; 0Þ 2x C2x 3 u4 6 6 3
ð0; y1Þ my Csy 3 u5 6 6 6
ðx1; y1Þ 1 C1 1 (u4, �u5) 12 12 12

Parent symmetry G: 6zmx2y D̂D3h

A0
2 x2 6z C3h 1 d11 ¼ �d12 ¼ �d26 2 1 0

A00
2 x3 3zmx C3vx 1 P3 2 1 2

A0
1 x4 3z2y D3y 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 0

E0 ðx2; 0Þ mx2ymz C2vy 3 P2; �u1 ¼ ��u2 3 3 3
(La) ðx2; y2Þ mz Csz 1 (P2, P1); (u1 � u2, 2u6) 6 6 6

E00 ðx1; 0Þ mx Csx 3 u4 6 6 6
ð0; y1Þ 2y C2y 3 u5 6 6 3
ðx1; y1Þ 1 C1 1 (u4, �u5) 12 12 12

Parent symmetry G: 6z=mzmxmy D
6h

A2g xþ
2 6z=mz C6h 1 A31 ¼ A32, A33, A15 ¼ A24 2 1 0

B1g xþ
3 3zmx D3dx 1 A11 ¼ �A12 ¼ �A26 2 1 0

B2g xþ
4 3zmy D3dy 1 A22 ¼ �A21 ¼ �A16 2 1 0

A1u x�
1 6z2x2y D6 1 "; g1 ¼ g2, g3; d14 ¼ �d25 2 1 0

A2u x�
2 6zmxmy C6v 1 P3 2 1 2

B1u x�
3 6z2xmy D3h 1 d11 ¼ �d12 ¼ �d26 2 1 0

B2u x�
4 6zmx2y D̂D3h 1 d22 ¼ �d21 ¼ �d16 2 1 0

E2g ðxþ2 ; 0Þ mxmymz D2h 3 �u1 ¼ ��u2 3 3 0
(La) ðxþ2 ; yþ2 Þ 2z=mz C2hz 1 (u1 � u2, 2u6) 6 6 0

E1g ðxþ1 ; 0Þ 2x=mx C2hx 3 u4 6 6 0
ð0; yþ1 Þ 2y=my C2hy 3 u5 6 6 0
ðxþ1 ; yþ1 Þ 1 Ci 1 (u4, �u5) 12 12 0

E1u ðx�1 ; 0Þ 2xmymz C2vx 3 P1 6 3 6
ð0; y�1 Þ mx2ymz C2vy 3 P2 6 3 6
ðx�1 ; y�1 Þ mz Csz 1 (P1, P2) 12 6 12

E2u ðx�2 ; 0Þ 2x2y2z D2 3 �g1 ¼ ��g2; d36, �d14 ¼ �d25 6 3 0
ð0; y�2 Þ mxmy2z C2vz 3 g6: d32 ¼ �d31, d24 ¼ �d15 6 3 2
ðx�2 ; y�2 Þ 2z C2z 1 (g1 � g2, 2g6); ð2d36; d32 � d31Þ, ðd14 þ d25; d24 � d15Þ 12 6 2
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continuously. A table of all crystallographic point groups G along
with all their physically irreducible representations, corre-
sponding ferroic point groups F and related data has been
compiled by Janovec et al. (1975). These data are presented in an
improved form in Table 3.1.3.1 together with corresponding
principal tensor parameters and numbers of ferroic, ferroelectric
and ferroelastic domain states. This table facilitates solving of the
following typical problems:

(1) Inverse Landau problem (Ascher & Kobayashi, 1977) of
equitranslational phase transitions: For a given equitranslational
symmetry descent G +

t
F (determined for example from

diffraction experiments), find the representation �� of G that
specifies the transformation properties of the primary order
parameter. Solution: In Table 3.1.3.1, one finds a physically irre-

ducible representation�� of the point group G of G with epikernel
F (point group of F ). For some symmetry descents from cubic
point groups G ¼ 432, �443m and m�33m, the inverse Landau
problem has two solutions, which are given in Table 3.1.3.2.

If for a given symmetry descent G +
t
F no appropriate R-irep

exists in Table 3.1.3.1, then the primary order parameter �
transforms according to a reducible representation of G. These
transitions are always discontinuous and can be accomplished
with several reducible representations. Some symmetry descents
can be associated with an irreducible representation and with
several reducible representations. All these transitions are
treated in the software GI?KoBo-1 and in Kopský (2001). All
point-group symmetry descents are listed in Table 3.4.2.7 and can
be traced in lattices of subgroups (see Figs. 3.1.3.1 and 3.1.3.2).
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Table 3.1.3.1 (cont.)

(g) Cubic parent groups
Covariants with standardized labels and conversion equations:

u3x ¼ uþ
3x ¼ u3 � aðu1 þ u2Þ; u3y ¼ uþ

3y ¼ bðu1 � u2Þ

�u1 ¼ � 1
3 uþ

3x þ
1
ffiffi

3
p uþ

3y; �u2 ¼ � 1
3 uþ

3x �
1
ffiffi

3
p uþ

3y; �u3 ¼
2
3 uþ

3x

g�1 ¼ g1 þ g2 þ g3; g�3x ¼ g3 � aðg1 þ g2Þ; g�3y ¼ bðg1 � g2Þ

g1 ¼
1
3 g�1 � 1

3 g�3x þ
1
ffiffi

3
p g�3y; g2 ¼

1
3 g�1 � 1

3 g�3x �
1
ffiffi

3
p g�3y; g3 ¼

1
3 g�1 þ 2

3 g�3x

d�
1 ¼ d14 þ d25 þ d36; d�

3x ¼ bðd14 � d25Þ; d�
3y ¼ aðd14 þ d25Þ � d36

d14 ¼
1
3 d�

1 þ 1
ffiffi

3
p d�

3x þ
1
3 d�

3y; d25 ¼
1
3 d�

1 � 1
ffiffi

3
p d�

3x þ
1
3 d�

3y; d36 ¼
1
3 d�

1 � 2
3 d�

3y

d1x ¼ d13 � d12; d1y ¼ d21 � d23; d1z ¼ d32 � d31

d2x ¼ d13 þ d12; d2y ¼ d21 þ d23; d2z ¼ d32 þ d31

d13 ¼
1
2 ðd1x þ d2xÞ; d21 ¼

1
2 ðd1y þ d2yÞ; d32 ¼

1
2 ðd1z þ d2zÞ

d12 ¼
1
2 ðd2x � d1xÞ; d23 ¼

1
2 ðd2y � d1yÞ; d31 ¼

1
2 ðd2z � d1zÞ

a ¼ 1
2, b ¼

ffiffi

3
p

2 , �a
�	 ¼ ð��	 � �	�Þ, � ¼ 1; 2; . . . ; 6, 	 ¼ 1; 2; . . . ; 6.

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 23 T

E ðx3; y3Þ 2x2y2z D2 1 [u3 � aðu1 þ u2Þ, bðu1 � u2Þ� 3 3 0
(La) �u1 þ �u2 þ �u3 ¼ 0

T ð0; 0; z1Þ 2z C2z 3 P3; u6 6 6 6
ðx1; x1; x1Þ 3p C3p 4 P1 ¼ P2 ¼ P3; u4 ¼ u5 ¼ u6 4 4 4

(La, Li) ðx1; y1; z1Þ 1 C1 1 (P1, P2, P3); (u4, u5, u6) 12 12 12

Parent symmetry G: m3 Th

Au x�
1 23 T 1 "; g1 ¼ g2 ¼ g3; d14 ¼ d25 ¼ d36 2 1 0

Eg ðxþ3 ; yþ3 Þ mxmymz D2h 1 [u3 � aðu1 þ u2Þ, bðu1 � u2Þ� 3 3 0
(La) �u1 þ �u2 þ �u3 ¼ 0

Eu ðx�3 ; y�3 Þ 2x2y2z D2 1 [g3 � aðg1 þ g2Þ, bðg1 � g2Þ� 6 3 0
�g1 þ �g2 þ �g3 ¼ 0
[bðd14 � d25Þ, aðd14 þ d25Þ � d36]
�d14 þ �d25 þ �d36 ¼ 0

Tg ð0; 0; zþ1 Þ 2z=mz C2hz 3 u6 6 6 0
ðxþ1 ; xþ1 ; xþ1 Þ 3p C3ip 4 u4 ¼ u5 ¼ u6 4 4 0

(La) ðxþ1 ; yþ1 ; zþ1 Þ 1 Ci 1 (u4, u5, u6) 12 12 0

Tu ð0; 0; z�1 Þ mxmy2z C2vz 3 P3 6 3 6
ðx�1 ; x�1 ; x�1 Þ 3p C3p 4 P1 ¼ P2 ¼ P3 8 4 8
ðx�1 ; y�1 ; z�1 Þ 1 C1 1 (P1, P2, P3) 24 12 24

Parent symmetry G: 432 O

A2 x2 23 T 1 d14 ¼ d25 ¼ d36 2 1 0

E ðx3; 0Þ 4z2x2xy D4z 3 �u1 ¼ �u2 ¼ � 1
2 �u3 3 3 0

(La) ðx3; y3Þ 2x2y2z D2 1 ½u3 � aðu1 þ u2Þ, bðu1 � u2Þ� 6 6 0
�u1 þ �u2 þ �u3 ¼ 0

T1 ð0; 0; z1Þ 4z C4z 3 P3 6 3 6
ðx1; x1; 0Þ 2xy C2xy 6 P1 ¼ P2 12 12 12
ðx1; x1; x1Þ 3p C3p 4 P1 ¼ P2 ¼ P3 8 4 8

(Li) ðx1; y1; z1Þ 1 C1 1 (P1, P2, P3) 24 24 24

T2 ð0; 0; z2Þ 2xy2xy2z D̂D2z 3 u6 6 6 0
ðx2;�x2; z2Þ 2xy C2xy 6 u4 ¼ �u5, u6 12 12 12
ðx2; x2; x2Þ 3p2xy D3p 4 u4 ¼ u5 ¼ u6 4 4 0

(La, Li) ðx2; y2; z2Þ 1 C1 1 (u4, u5, u6) 24 24 24
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Table 3.1.3.1 (cont.)

R-irep
��

Standard
variables

Ferroic symmetry

Principal tensor parameters

Domain states

F1 nF nf na ne

Parent symmetry G: 43m Td

A2 x2 23 T 1 "; g1 ¼ g2 ¼ g3 2 1 0
A14 ¼ A25 ¼ A36; �a

23 ¼ �a
31 ¼ �a

12

E ðx3; 0Þ 4z2xmxy D2dz 3 �u1 ¼ �u2 ¼ � 1
2 �u3 3 3 0

(La) ðx3; y3Þ 2x2y2z D2 1 [u3 � aðu1 þ u2Þ, bðu1 � u2Þ� 6 6 0
�u1 þ �u2 þ �u3 ¼ 0

T1 ð0; 0; z1Þ 4z S4z 3 g6; d32 ¼ �d31, d24 ¼ �d15 6 3 0
ðx1; x1; 0Þ mxy Csxy 6 g4 ¼ g5 12 12 12

d13 ¼ �d23, d12 ¼ �d21

d35 ¼ �d34, d26 ¼ �d16

ðx1; x1; x1Þ 3p C3p 4 g4 ¼ g5 ¼ g6 8 4 4
d13 ¼ d21 ¼ d32; d12 ¼ d23 ¼ d31

d35 ¼ d16 ¼ d24; d26 ¼ d34 ¼ d15

ðx1; y1; z1Þ 1 C1 1 (g4, g5, g6) 24 24 24
(d13 � d12, d21 � d23, d32 � d31)
(d35 � d26, d16 � d34, d24 � d15)

T2 ð0; 0; z2Þ mxymxy2z ĈC2vz 3 P3; u6 6 6 6
ðx2;�x2; z2Þ mxy Csxy 6 P1 ¼ �P2, P3; u4 ¼ �u5, u6 12 12 12
ðx2; x2; x2Þ 3pmxy C3vp 4 P1 ¼ P2 ¼ P3; u4 ¼ u5 ¼ u6 4 4 4

(La) ðx2; y2; z2Þ 1 C1 1 (P1, P2, P3); (u4, u5, u6) 24 24 24

Parent symmetry G: m3m Oh

A2g xþ
2 m3 Th 1 A14 ¼ A25 ¼ A36; �a

23 ¼ �a
31 ¼ �a

12 2 1 0
A1u x�

1 432 O 1 "; g1 ¼ g2 ¼ g3; 2 1 0
A2u x�

2 43m Td 1 d14 ¼ d25 ¼ d36 2 1 0

Eg ðxþ3 ; 0Þ 4z=mzmxmxy D4hz 3 �u3 3 3 0
(La) ðxþ3 ; yþ3 Þ mxmymz D2h 1 ½�u3 � að�u1 þ �u2Þ, bð�u1 � �u2Þ� 6 6 0

Eu ðx�3 ; 0Þ 4z2x2xy D4z 3 g1 ¼ g2, g3; d14 ¼ �d25 12 3 0
ð0; y�3 Þ 4z2xmxy D2dz 3 g1 ¼ �g2; d14 ¼ d25 ¼ d36 6 3 0
ðx�3 ; y�3 Þ 2x2y2z D2 1 [g3 � aðg1 þ g2Þ, bðg1 � g2Þ� 12 6 0

½bðd14 � d25Þ; aðd14 þ d25Þ � d36�

T1g ð0; 0; zþ1 Þ 4z=mz C4hz 3 A33, A32 ¼ A31, A24 ¼ A15;A14 ¼ �A25 6 3 0
ðxþ1 ; xþ1 ; 0Þ 2xy=mxy C2hxy 6 A11 ¼ A22, 12 12 0

A13 ¼ A23, A12 ¼ A21

A35 ¼ A34, A26 ¼ A16

ðxþ1 ; xþ1 ; xþ1 Þ 3p C3ip 4 A11 ¼ A22 ¼ A33 8 4 0
A13 ¼ A21 ¼ A32, A12 ¼ A32 ¼ A31

A35 ¼ A16 ¼ A24, A26 ¼ A34 ¼ A15

ðxþ1 ; yþ1 ; zþ1 Þ 1 Ci 1 (A11, A22, A33) 24 24 0
(A13 þ A12, A21 þ A23, A32 þ A31)
(A35 þ A26, A16 þ A34, A24 þ A15)

T2g ð0; 0; zþ2 Þ mxymxymz D̂D2hz 3 u6 6 6 0
ðxþ2 ;�xþ2 ; zþ2 Þ 2xy=mxy C2hxy 6 u4 ¼ �u5, u6 24 12 12
ðxþ2 ; xþ2 ; xþ2 Þ 3pmxy D3dp 4 u4 ¼ u5 ¼ u6 4 4 0

(La) ðxþ2 ; yþ2 ; zþ2 Þ 1 Ci 1 (u4, u5, u6) 24 24 0

T1u ð0; 0; z�1 Þ 4zmxmxy C4vz 3 P3 6 3 6
ðx�1 ; y�1 ; 0Þ mz Csz 3 P1,P2 24 12 24
ðx�1 ; x�1 ; 0Þ mxy2xymz ĈC2vxy 6 P1 ¼ P2 12 6 12
ðx�1 ;�x�1 ; z�1 Þ mxy Csxy 6 P1 ¼ �P2, P3 24 12 24
ðx�1 ; x�1 ; x�1 Þ 3pmxy C3vp 4 P1 ¼ P2 ¼ P3 8 4 8
ðx�1 ; y�1 ; z�1 Þ 1 C1 1 (P1, P2, P3) 48 24 48

T2u ð0; 0; z�2 Þ 4zmx2xy D̂D2dz 3 g6; d32 ¼ �d31, d24 ¼ �d15 6 3 0
ðx�2 ; y�2 ; 0Þ mz Csz 3 g4, g5; d13, d12, d21, d23 24 12 24

d35, d26, d16, d34

ðx�2 ;�x�2 ; 0Þ mxy2xymz ĈC2vxy 6 g4 ¼ �g5; d13 ¼ d23, d21 ¼ d21 12 6 12
d35 ¼ d34, d16 ¼ d26

ðx�2 ;�x�2 ; z�2 Þ 2xy C2xy 6 g4 ¼ �g5, g6; d13 ¼ d23, d21 ¼ d21 24 12 12
d35 ¼ d34, d16 ¼ d26

d32 ¼ �d31, d24 ¼ �d15

ðx�2 ; x�2 ; x�2 Þ 3p2xy D3p 4 g4 ¼ g5 ¼ g6; 8 4 0
d13 ¼ �d12 ¼ d21 ¼ �d23 ¼ d32 � d31

d35 ¼ �d26 ¼ d16 ¼ �d34 ¼ d24 ¼ �d15

ðx�2 ; y�2 ; z�2 Þ 1 C1 1 (g4, g5, g6) 48 24 48
(d13 � d12, d21 � d23, d32 � d31)
(d35 � d26, d16 � d34, d24 � d15)
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The solution of the inverse Landau problem – i.e. the identi-
fication of the representation �� relevant to symmetry descent
G + F – enables one to determine the corresponding nomal
mode (so-called soft mode) of the transition (see e.g. Rousseau et
al., 1981). We note that this step requires additional knowledge of
the crystal structure, whereas other conclusions of the analysis
hold for any crystal structure with a given symmetry descent
G + F. Normal-mode determination reveals the dynamic
microscopic nature of the instability of the crystal lattice which
leads to the phase transition (for more details and examples, see
Section 3.1.5).

The representation �� further determines the principal tensor
parameters associated with the primary order parameter �. If one
of them is a vector (polarization) the soft mode is infrared-active
in the parent phase; if it is a symmetric second-rank tensor
(spontaneous strain), the soft mode is Raman active in this phase.
Furthermore, the R-irep �� determines the polynomial in
components of � in the Landau free energy (basic invariant
polynomials, called integrity bases, are available in the software
GI?KoBo-1 and in Kopský, 2001) and allows one to decide
whether the necessary conditions of continuity of the transition
(so-called Landau and Lifshitz conditions) are fulfilled.

(2) Direct Landau problem of equitranslational phase transi-
tions: For a given space group G of the parent phase and the R-
irep �� (specifying the transformation properties of the primary
order parameter �), find the corresponding equitranslational
space group F of the ferroic phase. To solve this task, one first
finds in Table 3.1.3.1 the point group F that corresponds to point
group G of space group G and to the given R-irep ��. The point-
group symmetry descent G + F thus obtained specifies uniquely
the equitranslational subgroup F of G that can be found in the
lattices of equitranslational subgroups of space groups available
in the software GI?KoBo-1 (see Section 3.1.6).

(3) Secondary tensor parameters of an equitranslational phase
transition G +

t
F . These parameters are specified by the repre-

sentation �� of G associated with a symmetry descent � + L,
where L is an intermediate group [see equation (3.1.3.1)]. In
other words, the secondary tensor parameters of the transition
G + F are identical with principal tensor parameters of the
transition G + L. To each intermediate group L there corre-
sponds a set of secondary tensor parameters. All intermediate
subgroups of a symmetry descent G + F can be deduced from
lattices of subgroups in Figs. 3.1.3.1 and 3.1.3.2.

The representation �� specifies transformation properties of
the secondary tensor parameter � and thus determines e.g its

infrared and Raman activity in the parent phase and enables one
to make a mode analysis. Representation �� together with ��

determine the coupling between secondary and primary tensor
parameters. The explicit form of these faint interactions (Aizu,
1973; Kopský, 1979d) can be found in the software GI?KoBo-1
and in Kopský (2001).

(4) Changes of property tensors at a ferroic phase transition.
These changes are described by tensor parameters that depend
only on the point-group-symmetry descent G + F. This means
that the same principal tensor parameters and secondary tensor
parameters appear in all equitranslational and in all non-equi-
translational transitions with the same G + F. The only difference
is that in non-equitranslational ferroic phase transitions a prin-
cipal tensor parameter corresponds to a secondary ferroic order
parameter. It still plays a leading role in tensor distinction of
domains, since it exhibits different values in any two ferroic
domain states (see Section 3.4.2.3). Changes of property tensors
at ferroic phase transitions are treated in detail in the software
GI?KoBo-1 and in Kopský (2001).

We note that Table 3.1.3.1 covers only those point-group
symmetry descents G + F that are ‘driven’ by R-ireps of G. All
possible point-group symmetry descents G + F are listed in Table
3.4.2.7. Principal and secondary tensor parameters of symmetry
descents associated with reducible representations are combi-
nations of tensor parameters appearing in Table 3.1.3.1 (for a
detailed explanation, see the manual of the software GI?KoBo-1
and Kopský, 2000). Necessary data for treating these cases are
available in the software GI?KoBo-1 and Kopský (2001).

3.1.3.3.1. Explanation of Table 3.1.3.1

Parent symmetry G: the short international (Hermann–
Mauguin) and the Schoenflies symbol of the point group G of the
parent phase are given. Subscripts specify the orientation of
symmetry elements (generators) in the Cartesian crystal-
lophysical coordinate system of the group G (see Figs. 3.4.2.3 and
3.4.2.4, and Tables 3.4.2.5 and 3.4.2.6).

R-irep ��: physically irreducible representation �� of the group
G in the spectroscopic notation. This representation defines
transformation properties of the primary order parameter � and
of the principal tensor parameters. Each complex irreducible
representation is combined with its complex conjugate and thus a
real physically irreducible representation R-irep is formed.
Matrices Dð�Þ of R-ireps are given explicitly in the the software
GI?KoBo-1.
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Table 3.1.3.2. Symmetry descents G + F1 associated with two irreducible representations

G �� F1

Proper or improper Domain states Full or partial

Ferroelectric Ferroelastic nf ne na Ferroelectric Ferroelastic

432 T1 2xy proper improper 12 12 12 full full
T2 improper proper

T1 1 improper improper 24 24 24 full full
T2 proper proper

�443m T1 mxy improper improper 12 12 12 full full
T2 proper proper

T1 1 improper improper 24 24 24 full full
T2 proper proper

m�33m T1g 2xy=mxy non improper 12 0 12 non full
T2g non proper

T1g
�11 non improper 24 0 24 non full

T2g non proper

T1u mx�yy2xymz proper improper 12 12 6 full partial
T2u improper improper

T1u mz proper improper 24 24 12 full partial
T2u improper improper

T1u 1 proper improper 48 48 24 full partial
T2u improper improper
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(La) below the symbol of the irreducible representation ��

indicates that the Landau condition is violated, hence the tran-
sition cannot be continuous (second order). The Landau condi-
tion requires the absence of the third-degree invariant
polynomial of the order-parameter components (the symme-
trized triple product ½���

3 must not contain the identity repre-
sentation of G). For more details see Lyubarskii (1960), Kociński
(1983, 1990), Tolédano & Tolédano (1987), Izyumov & Syro-
miatnikov (1990) and Tolédano & Dmitriev (1996).

(Li) below the symbol of the irreducible representation ��

means that the Lifshitz condition is violated, hence the transition
to a homogeneous ferroic phase is not continuous. The Lifshitz
condition demands the absence of invariant terms that couple
bilinearly the order-parameter components with their spatial
derivatives that are not exact differentials (the antisymmetric

square f��g
2 has no representation in common with the vector

representation of G). For more details see Lyubarskii (1960),
Kociński (1983, 1990), Tolédano & Tolédano (1987), Izyumov &
Syromiatnikov (1990) and Tolédano & Dmitriev (1996).

If there is no symbol (La) and/or (Li) below the symbol of the
R-irep �� (i.e. if both Landau and Lifshitz conditions are
fulfilled), then the R-irep is called an active representation. In the
opposite case, the R-irep is a passive representation (Lyubarskii,
1960; Kociński, 1983, 1990).

Standard variables: components of the order parameter in the
carrier space of the irreducible representation �� expressed in so-
called standard variables (see the manual of the software
GI?KoBo-1). Upper and lower indices and the typeface of
standard variables allow one to identify to which irreducible
representation �� they belong. Standard variables of one-

dimensional representations are denoted
by x (Sans Serif typeface), two- or three-
dimensional R-ireps by x; y or x; y; z,
respectively. Upper indices þ and �

correspond to the lower indices g
(gerade) and u (ungerade) of spectro-
scopic notation, respectively. The lower
index specifies to which irreducible
representation the variable belongs.

For multidimensional representations,
a general vector of the carrier space V� is
given in the last row; this vector is
invariant under the kernel of �� that
appears as a low-symmetry group in
column F1. The other rows contain
special vectors defined by equal or zero
values of some standard variables; these
vectors are invariant under epikernels of
�� given in column F1.

F1: short international (Hermann–
Mauguin) and Schoenflies symbol of the
point group F1 which describes the
symmetry of the first single domain state
of the ferroic (low-symmetry) phase. The
subscripts define the orientation of
symmetry elements (generators) of F1 in
the Cartesian crystallophysical coordi-
nate system of the group G (see Figs.
3.4.2.3 and 3.4.2.4, and Tables 3.4.2.5 and
3.4.2.6). This specifies the orientation of
the group F1, which is a prerequisite for
domain structure analysis (see Chapter
3.4).

nF : number of subgroups conjugate to
F1 under G. If nF ¼ 1, the group F1 is a
normal subgroup of G (see Section 3.2.3).

Principal tensor parameters: covariant
tensor components, i.e. linear combina-
tions of Cartesian tensor components
that transform according to the same
matrix R-irep Dð�Þ as the primary order
parameter �. Principal tensor parameters
are given in this form in the software
GI?KoBo-1 and in Kopský (2001).

This presentation is in certain situa-
tions not practical, since property tensors
are usually described by numerical values
of their Cartesian components. Then it is
important to know morphic Cartesian
tensor components and symmetry-
breaking increments of nonzero Carte-
sian components that appear sponta-
neously in the ferroic phase. The bridge
between these two presentations is
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Fig. 3.1.3.1. Lattice of subgroups of the group m�33m. Conjugate subgroups are depicted as a pile of cards.
In the software GI?KoBo-1, one can pull out individual conjugate subgroups by clicking on the pile. All
conjugate subgroups are given explicitly in Table 3.4.2.7.

Fig. 3.1.3.2. Lattice of subgroups of the group 6=mmm. Conjugate subgroups are depicted as a pile of
cards. In the software GI?KoBo-1, one can pull out individual conjugate subgroups by clicking on the
pile. All conjugate subgroups are given explicitly in Table 3.4.2.7.
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provided by the conversion equations that express Cartesian
tensor components as linear combinations of principal and
secondary covariant components (for more details on tensorial
covariants and conversion equations see Appendix E of the
manual for GI?KoBo-1 and Kopský, 2001).

We illustrate the situation on a transition with symmetry
descent 4z2x2xy + 2x2y2z. In Table 3.1.3.1, we find that the prin-
cipal tensor parameter transforms according to irreducible
representation B1 with standard variable x3. The corresponding
covariant u3 ¼ u1 � u2 can be found in Appendix E of the
manual of GI?KoBo-1 (or in Kopský, 2001), where one also finds
an invariant containing u1 and u2: u1;1 ¼ u1 þ u2. The corre-
sponding conversion equations are: u1 ¼

1
2 ðu1;1 þ u3Þ,

u2 ¼
1
2 ðu1;1 � u3Þ. In the parent phase u3 ¼ u

ðpÞ
1 � u

ðpÞ
2 ¼ 0, hence

u
ðpÞ
1 ¼ u

ðpÞ
2 ¼ 1

2 u1;1, whereas in the ferroic phase u
ðf Þ
1 ¼ 1

2 ðu1;1 þ u3Þ

¼ u
ðpÞ
1 þ 1

2 u1;1 ¼ u
ðpÞ
1 þ �u1, u

ðf Þ
2 ¼ u

ðpÞ
2 � 1

2 u1;1 ¼ u
ðpÞ
2 þ �u2 ¼

u
ðpÞ
1 � �u1. The symmetry-breaking increments �u1 ¼ ��u2

describe thus the changes of the Cartesian components that
correspond to the nonzero principal tensor component u1 � u2.

An analogous situation occurs frequently in trigonal and
hexagonal parent groups, where u1 � u2 (or g1 � g2) transforms
like the first or second component of the principal tensor para-
meter. In these cases, the corresponding symmetry-breaking
increments of Cartesian components are again related:
�u1 ¼ ��u2 (or �g1 ¼ ��g2).

We note that relations like A11 ¼ �A12 ¼ �A26 do not imply
that these components transform as the standard variable.
Though these components are proportional to the principal
tensor parameter in the first domain state, they cannot be
transformed to corresponding components in other domain states
as easily as covariant tensor components of the principal tensor
parameter.

In general, it is useful to consider a tensor parameter as a
vector in the carrier space of the respective representation. Then
the Cartesian components are projections of this vector on the
Cartesian basis of the tensor space.

The presentation of the principal tensor parameters in the
column Principal tensor parameters of this table is a compromise:
whenever conversion equations lead to simple relations between
morphic Cartesian components and/or symmetry-breaking
increments, we present these relations, in some cases together
with corresponding covariants. In the more complicated cases,
only the covariants are given. The corresponding conversion
equations and labelling of covariants are given at the beginning
of that part of the table which covers hexagonal and cubic parent
groups G. In the main tables of the software GI?KoBo-1, the
principal tensor parameters and the secondary tensor parameters
up to rank 4 are given consistently in covariant form. Labelling of
covariant components and conversion equations are given in
Appendix E of the manual.

The principal tensor parameters presented in Table 3.1.3.1
represent a particular choice of property tensors for standard
variables given in the second column. To save space, property
tensors are selected in the following way: polarization P and
strain u are always listed; if none of their components transform
according to Dð�Þ, then components of one axial and one polar
tensor (if available) appearing in Table 3.1.3.3 are given. Principal
parameters of two different property tensors are separated by a
semicolon. If two different components of the same property
tensor transform in the same way, they are separated by a comma.

As tensor indices we use integers 1; 2; 3 instead of vector
components x; y; z and contracted indices 1; 2; 3; 4; 5; 6 in matrix
notation for pairs xx; yy; zz; yz � zy; zx � xz; xy � yx, respec-
tively

Important note: To make Table 3.1.3.1 compatible with the
software GI?KoBo-1 and with Kopský (2001), coefficients of
property tensors in matrix notation with contracted indices 4, 5, 6
do not contain the numerical factors 2 and 4 which are usually

introduced to preserve a compact form (without these factors) of
linear constitutive relations [see Chapter 1.1, Nye (1985) and
especially Appendices E and F of Sirotin & Shaskolskaya (1982)].
This explains the differences in matrix coefficients appearing in
Table 3.1.3.1 and those presented in Chapter 1.1 or in Nye (1985)
and in Sirotin & Shaskolskaya (1982). Thus e.g. for the symmetry
descent 6z2x2y + 3z2x, we find in Table 3.1.3.1 the principal tensor
parameters d11 ¼ �d12 ¼ �d26, whereas according to Chapter 1.1
or e.g. to Nye (1985) or Sirotin & Shaskolskaya (1982) these
coefficients for F1 ¼ 3z2x are related by equations
d11 ¼ �d12 ¼ �2d26.

Property tensors and symbols of their components that can be
found in Table 3.1.3.1 are given in the left-hand half of Table
3.1.3.3. The right-hand half presents other tensors that transform
in the same way as those on the left and form, therefore, covar-
iant tensor components of the same form as those given in the
column Principal tensor parameters. Principal and secondary
tensor parameters for all property tensors that appear in Table
3.1.3.3 are available in the software GI?KoBo-1.

nf : number of ferroic single domain states that differ in the
primary order parameter � and in the principal tensor para-
meters.

na: number of ferroelastic single domain states. If na ¼ nf ,
na < nf or na ¼ 1, the ferroic phase is, respectively, a full, partial
or non-ferroelastic one.

ne: number of ferroelectric single domain states. If ne ¼ nf ,
ne < nf or ne ¼ 0; 1, the ferroic phase is, repectively, a full, partial
or non-ferroelectric one (n ¼ 0 or n ¼ 1 correspond to a non-
polar or to a polar parent phase, respectively) (see Section 3.4.2).

3.1.3.4. Examples

Example 3.1.3.4.1. Phase transition in triglycine sulfate (TGS).
Assume that the space groups of both parent (high-symmetry)
and ferroic (low-symmetry) phases are known: G ¼ P21=c ðC5

2hÞ,
F 1 ¼ P21 ðC2

2Þ. The same number of formula units in the
primitive unit cell in both phases suggests that the transition is an
equitranslational one. This conclusion can be checked in the
lattice of equitranslational subgroups of the software GI?KoBo-
1. There we find for the low-symmetry space group the symbol
P1121ðb=4Þ, where the vector in parentheses expresses the shift of
the origin with respect to the conventional origin given in IT A
(2002).

In Table 3.1.3.1, one finds that the corresponding point-group-
symmetry descent 2z=mz + 2z is associated with irreducible
representation �� ¼ Au. The corresponding principal tensor
parameters of lowest rank are the pseudoscalar " (enantio-
morphism or chirality) and the vector of spontaneous polariza-
tion with one nonzero morphic component P3 – the transition is a
proper ferroelectric one. The non-ferroelastic (na ¼ 1) full
ferroelectric phase has two ferroelectric domain states
(nf ¼ ne ¼ 2). Other principal tensor parameters (morphic
tensor components that transform according to ��) are available
in the software GI?KoBo-1: g1, g2, g3, g6; d31, d32, d33, d36, d14, d15,
d24, d25. Property tensors with these components are listed in
Table 3.1.3.3. As shown in Section 3.4.2, all these components
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Table 3.1.3.3. Important property tensors

i ¼ 1; 2; 3; �; 	 ¼ 1; 2; . . . ; 6.

Tensor
components Property

Tensor
components Property

" enantiomorphism chirality
Pi polarization pi pyroelectricity
u� strain "ij dielectric permittivity
g� optical activity
di� piezoelectricity ri� electro-optics
Ai� electrogyration
��	 piezo-optics Q�	 electrostriction
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change sign when one passes from one domain state to the other.
Since there is no intermediate group between G and F, there are
no secondary tensor parameters.

Example 3.1.3.4.2. Phase transitions in barium titanate
(BaTiO3). We shall illustrate the solution of the inverse Landau
problem and the need to correlate the crystallographic system
with the Cartesian crystallophysical coordinate system. The
space-group type of the parent phase is G ¼ Pm3m, and those of
the three ferroic phases are F

ð1Þ
1 ¼ P4mm, F

ð2Þ
1 ¼ Cm2m,

F
ð3Þ
1 ¼ R3m, all with one formula unit in the primitive unit cell.
This information is not complete. To perform mode analysis,

we must specify these space groups by saying that the lattice
symbol P in the first case and the lattice symbol R in the third
case are given with reference to the cubic crystallographic basis
(a; b; c), while lattice symbol C in the second case is given with
reference to crystallographic basis ½ða � bÞ; ða þ bÞ; c�. If we now
identify vectors of the cubic crystallographic basis with vectors of
the Cartesian basis by a ¼ aex, b ¼ aey, c ¼ aez, where ex, ey, ez

are three orthonormal vectors, we can see that the corresponding
point groups are F

ð1Þ
1 ¼ 4zmxmxy, F

ð2Þ
1 ¼ mxy2xymz, F

ð3Þ
1 ¼ 3pmxy.

Notice that without specification of crystallographic bases one
could interpret the point group of the space group Cm2m as
mx2ymz. Bases are therefore always specified in lattices of equi-
translational subgroups of the space groups that are available in
the software GI?KoBo-1, where we can check that all three
symmetry descents are equitranslational.

In Table 3.1.3.1, we find that these three ferroic subgroups are
epikernels of the R-irep �� ¼ T1u with the following principal
tensor components: P3, P1 ¼ P2, P1 ¼ P2 ¼ P3, respectively.
Other principal tensor parameters can be found in the main
tables of the software GI?KoBo-1. The knowledge of the
representation �� allows one to perform soft-mode analysis (see
e.g. Rousseau et al., 1981).

For the tetragonal ferroelectric phase with F1 ¼ 4zmxmy, we
find in Fig. 3.1.3.1 an intermediate group L1 ¼ 4z=mzmxmxy. In
Table 3.1.3.1, we check that this is an epikernel of the R-irep Eg

with secondary tensor parameter �u3. This phase is a full (proper)
ferroelectric and partial ferroelastic one.

More details about symmetry aspects of structural phase
transitions can be found in monographs by Izyumov & Syro-
miatnikov (1990), Kociński (1983, 1990), Landau & Lifshitz
(1969), Lyubarskii (1960), Tolédano & Dmitriev (1996) and
Tolédano & Tolédano (1987). Group–subgroup relations of space
groups are treated extensively in IT A1 (2003).

3.1.4. Example of a table for non-equitranslational phase
transitions

By J.-C. Tolédano

In the preceding Section 3.1.3, a systematic tabulation of possible
symmetry changes was provided for the class of equitranslational
phase transitions. This tabulation derives from the principles
described in Section 3.1.2, and relates the enumeration of the
symmetry changes at structural transitions to the characteristics
of the irreducible representations of the space group G of the
‘parent’ (highest-symmetry) phase adjacent to the transition.
Systematic extension of this type of tabulation to the general case
of transitions involving both a decrease of translational and of
point-group symmetry has been achieved by several groups
(Tolédano & Tolédano, 1976, 1977, 1980, 1982; Stokes & Hatch,
1988). The reader can refer, in particular, to the latter reference
for an exhaustive enumeration of the characteristics of possible
transitions. An illustration of the results obtained for a restricted
class of parent phases (those associated with the point symmetry
4=m and to a simple Bravais lattice P) is presented here.

In order to clarify the content Table 3.1.4.1, let us recall (cf.
Section 3.1.2) that Landau’s theory of continuous phase transi-
tions shows that the order parameter of a transition transforms
according to a physically irreducible representation of the space
group G of the high-symmetry phase of the crystal. A physically
irreducible representation is either a real irreducible repre-
sentation of G or the direct sum of two complex-conjugate irre-
ducible representations of G. To classify the order-parameter
symmetries of all possible transitions taking place between a
given parent (high-symmetry) phase and another (low-
symmetry) phase, it is therefore necessary, for each parent space
group, to list the various relevant irreducible representations.

Each irreducible representation of a given space group can be
denoted �nðk

�Þ and identified by two quantifies. The star k�,
represented by a vector linking the origin of reciprocal space to a
point of the first Brillouin zone, specifies the translational
symmetry properties of the basis functions of �nðk

�Þ. The
dimension of �nðk

�Þ is equal to the number of components of the
order parameter of the phase transition considered. A given
space group has an infinite number of irreducible representations.
However, physical considerations restrict a systematic enumera-
tion to only a few irreducible representations. The restrictions
arise from the fact that one focuses on continuous (or almost
continuous) transitions between strictly periodic crystal struc-
tures (i.e. in particular, incommensurate phases are not consid-
ered), and have been thoroughly described previously (Tolédano
& Tolédano, 1987, and references therein).

3.1.5. Microscopic aspects of structural phase transitions and soft
modes

By J. F. Scott

3.1.5.1. Introduction

Phase transitions in crystals are most sensitively detected via
dynamic techniques. Two good examples are ultrasonic attenua-
tion and internal friction. Unfortunately, while often exquisitely
sensitive to subtle second-order phase transitions [e.g. the work
of Spencer et al. (1970) on BaMnF4], they provide no real
structural information on the lattice distortions that occur at such
phase transitions, or even convincing evidence that a real phase
transition has occurred (e.g. transition from one long-range
thermodynamically stable ordered state to another). It is not
unusual for ultrasonic attenuation to reveal a dozen reproducible
anomalies over a small temperature range, none of which might
be a phase transition in the usual sense of the phrase. At the other
extreme are detailed structural analyses via X-ray or neutron
scattering, which give unambiguous lattice details but often
totally miss small, nearly continuous rigid rotations of light ions,
such as hydrogen bonds or oxygen or fluorine octahedra or
tetrahedra. Intermediate between these techniques are phonon
spectroscopies, notably infrared (absorption or reflection) and
Raman techniques. The latter has developed remarkably over the
past thirty years since the introduction of lasers and is now a
standard analytical tool for helping to elucidate crystal structures
and phase transitions investigated by chemists, solid-state
physicists and materials scientists.

3.1.5.2. Displacive phase transitions

3.1.5.2.1. Landau–Devonshire theory

Landau (1937) developed a simple mean-field theory of phase
transitions which implicitly assumes that each atom or ion in a
system exerts a force on the other particles that is independent of
the distance between them (see Section 3.1.2.2). Although this is
a somewhat unphysical crude approximation to the actual forces,
which are strongly dependent upon interparticle spacings, it
allows the forces of all the other particles in the system to be
replaced mathematically by an effective ‘field’, and for the
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