International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 3.3, pp. 423-424

Section 3.3.9.2.3. Twinning with partial lattice coincidence (lattice index [[j]> 1])

Th. Hahna* and H. Klapperb

a Institut für Kristallographie, Rheinisch–Westfälische Technische Hochschule, D-52056 Aachen, Germany, and bMineralogisch-Petrologisches Institut, Universität Bonn, D-53113 Bonn, Germany
Correspondence e-mail:  hahn@xtal.rwth-aachen.de

3.3.9.2.3. Twinning with partial lattice coincidence (lattice index [[j]> 1])

| top | pdf |

For these twins with partial but exact coincidence Friedel has coined the terms `twinning by reticular merohedry' or `by lattice merohedry'. Here the term merohedry refers only to the sublattice, i.e. to Case (2)[link] above. Typical examples with [[j] = 3] and [[j]> 3] were described in Section 3.3.8.3.[link] In addition to the sublattice relations, it is reasonable to include the point-group relations as well. Four examples are presented:

  • (1) Twinning of rhombohedral crystals (lattice index [[j] = 3], example FeBO3). The eigensymmetry point groups of the structure and of the R lattice (of the untwinned crystal) are both [{\cal H} = {\bar 3}\,2/m]. The extension of the eigensymmetry by the (binary) twin operation [2_z], as described in Example 3.3.6.5[link], leads to the composite symmetry [{\cal K} =6'/m'({\bar 3})\,2/m\,2'/m'], i.e. the point-group index is [[i] = 2]. The sublattice index is [[j] = 3], because of the elimination of the centring points of the original triple R lattice in forming the hexagonal P twin lattice.

  • (2) Reflection twinning across [\{21{\bar 3}0\}] or [\{14{\bar 5}0\}], or twofold rotation twinning around [\langle 540\rangle] or [\langle 230\rangle] of a hexagonal crystal with a P lattice (lattice symmetry [6/m\,2/m\,2/m]). The twin generates a hexagonal coincidence lattice of index [[j] = 7] ([\Sigma 7]) with [{\bf a}' = 3{\bf a} + 2{\bf b}], [{\bf b}' = -2{\bf a} + {\bf b}], [{\bf c}' = {\bf c}]. The hexagonal axes [{\bf a}'] and [{\bf b}'] are rotated around [001] by an angle of 40.9° with respect to a and b. The intersection lattice point group of both twin partners is [6/m]. The extension of this group by the twin operation `reflection across [\{21{\bar 3}0\}]' leads to the point group of the coincidence lattice [6/m\,2'/m'\,2'/m'] (referred to the coordinate axes [{\bf a}', {\bf b}', {\bf c}']). The primed operations define the coset (twin law). For hexagonal lattices rotated around [001], the [\Sigma 7] coincidence lattice ([[j] = 7]) is the smallest sublattice with lattice index [[j]> 1] (least-diluted hexagonal sublattice). No example of a hexagonal [\Sigma7] twin seems to be known.

  • (3) Tetragonal growth twins with [[j] = 5] ([\Sigma5] twins) in SmS1.9 (Tamazyan et al., 2000b[link]). This rare twin is illustrated in Fig. 3.3.8.1[link] and is described, together with the twins of the related phase PrS2, in Example (3)[link] of Section 3.3.9.2.4[link] below.

  • (4) Reflection twins across a general net plane (hkl) of a cubic P lattice. This example has been treated already in Section 3.3.9.1[link], Case (2)[link].

References

First citation Tamazyan, R., Arnold, H., Molchanov, V. N., Kuzmicheva, G. M. & Vasileva, I. G. (2000b). Contribution to the crystal chemistry of rare-earth chalcogenides. III. The crystal structure and twinning of SmS1.9. Z. Kristallogr. 215, 346–351.Google Scholar








































to end of page
to top of page