International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 3.4, pp. 449-505
https://doi.org/10.1107/97809553602060000645

Chapter 3.4. Domain structures

V. Janoveca* and J. Přívratskáb

a Department of Physics, Technical University of Liberec, Hálkova 6, 461 17 Liberec 1, Czech Republic, and bDepartment of Mathematics and Didactics of Mathematics, Technical University of Liberec, Hálkova 6, 461 17 Liberec 1, Czech Republic
Correspondence e-mail:  janovec@fzu.cz

References

First citation Aizu, K. (1969). Possible species of `ferroelastic' crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn, 27, 387–396.Google Scholar
First citation Aizu, K. (1970a). Possible species of ferromagnetic, ferroelectric and ferroelastic crystals. Phys. Rev. B, 2, 754–772. Google Scholar
First citation Aizu, K. (1970b). Determination of the state parameters and formulation of spontaneous strain for ferroelastics. J. Phys. Soc. Jpn, 28, 706–716.Google Scholar
First citation Aizu, K. (1972). Electrical, mechanical and electromechanical orders of state shifts in nonmagnetic ferroic crystals. J. Phys. Soc. Jpn, 32, 1287–1301.Google Scholar
First citation Aizu, K. (1973). Second-order ferroic state shifts. J. Phys. Soc. Jpn, 34, 121–128.Google Scholar
First citation Altmann, S. L. & Herzig, P. (1994). Point-group theory tables. Oxford: Clarendon Press.Google Scholar
First citation Amin, A. & Newnham, R. E. (1980). Tertiary ferroics. Phys. Status Solidi A, 61, 215–219.Google Scholar
First citation Barkley, J. R. & Jeitschko, W. (1973). Antiphase boundaries and their interactions with domain walls in ferroelastic–ferroelectric Gd2(MoO4)3. J. Appl. Phys. 44, 938–944.Google Scholar
First citation Bertagnolli, E., Kittinger, E. & Tichý, J. (1978). Observation of reversible elastic Dauphiné twinning in alpha-quartz. J. Phys. (Paris) Lett. 39, 295–297.Google Scholar
First citation Bertagnolli, E., Kittinger, E. & Tichý, J. (1979). Ferrobielastic hysteresis in alpha-quartz. J. Appl. Phys. 50, 6267–6271.Google Scholar
First citation Boulesteix, C. (1984). A survey of domains and domain walls generated by crystallographic phase transitions causing a change of the lattice. Phys. Status Solidi A, 86, 11–42.Google Scholar
First citation Bradley, C. J. & Cracknell, A. P. (1972). The mathematical theory of symmetry in solids. Oxford: Clarendon Press.Google Scholar
First citation Bul'bich, A. A. & Gufan, Yu. M. (1989a). Inevitable symmetry lowering in a domain wall near a reordering phase transition. Sov. Phys. JETP, 67, 1153–1157.Google Scholar
First citation Bul'bich, A. A. & Gufan, Yu. M. (1989b). Phase transition in domain walls. Ferroelectrics, 172, 351–359. Google Scholar
First citation Cahn, R. W. (1954). Twinned crystals. Adv. Phys. 3, 363–445.Google Scholar
First citation Calleja, M., Dove, M. T. & Salje, E. K. H. (2001). Anisotropic ionic transport in quartz: the effect of twin boundaries. J. Phys. Condens. Matter, 13, 9445–9454.Google Scholar
First citation Cao, W. & Barsch, G. R. (1990). Landau–Ginzburg model of interphase boundaries in improper ferroelastic perovskites of [D{_{4h}^{18}}] symmetry. Phys. Rev. B, 41, 4334–4348. Google Scholar
First citation Carpenter, M. A., Salje, E. K. H. & Graeme-Barber, A. (1998). Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur. J. Mineral. 10, 621–691.Google Scholar
First citation Catti, M. & Ferraris, G. (1976). Twinning by merohedry and X-ray structure determination. Acta Cryst. A32, 163–165. Google Scholar
First citation Chen, X. J., Liu, J. S., Zhu, J. S. & Wang, Y. N. (2000). Group theoretical analysis of the domain structure of SrBi2Ta2O9 ferroelectric ceramic. J Phys. Condens. Matter, 12, 3745–3749.Google Scholar
First citation Christian, J. W. (1975). The theory of transformations in metals and alloys. Oxford: Pergamon Press.Google Scholar
First citation Chrosch, J. & Salje, E. K. H. (1999). Temperature dependence of the domain wall width in LaAlO3. J. Appl. Phys. 85, 722–727.Google Scholar
First citation Curien, H. & Donnay, J. D. H. (1959). The symmetry of the complete twin. Am. Mineral. 44, 1067–1070.Google Scholar
First citation Curien, H. & Le Corre, Y. (1958). Notation des macles à l'aide du symbolisme des groupes de couleurs de Chubnikov. Bull. Soc. Fr. Mineral. Cristallogr. 81, 126–132.Google Scholar
First citation Dolino, G. (1985). In Modern problems in condensed matter sciences. Vol. 2, Incommensurate phases in dielectrics, edited by R. Blinc & A. P. Levanyuk, pp. 207–231. Amsterdam: North-Holland. Google Scholar
First citation Dudnik, E. F. & Shuvalov, L. A. (1989). Domain structure and phase boundaries in ferroelastics. Ferroelectrics, 98, 207–234. Google Scholar
First citation Erhart, J. & Cao, W. (2001). Effective symmetry and physical properties of twinned perovskite ferroelectric single crystals. J. Mater. Res. 16, 570–578.Google Scholar
First citation Fatuzzo, E. & Merz, W. J. (1967). Ferroelectricity. Amsterdam: North-Holland.Google Scholar
First citation Fesenko, E. G., Gavrilyachenko, B. G. & Semenchev, A. F. (1990). Domain structure in multiaxial ferroelectric crystals. Rostov on Don: Publishing House of the Rostov University (in Russian).Google Scholar
First citation Fousek, J. (1971). Permissible domain walls in ferroelectric species. Czech. J. Phys. B, 21, 955–968.Google Scholar
First citation Fousek, J. & Janovec, V. (1969). The orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys. 40, 135–142.Google Scholar
First citation Friedel, G. (1926). Leçons de cristallographie. Nancy, Paris, Strasbourg: Berger-Levrault. Reprint (1964). Paris: Blanchard. Google Scholar
First citation Fuksa, J. (1997). The role of the twinning group of a domain pair in tensor distinction of domain states. Ferroelectrics, 204, 135–155.Google Scholar
First citation Fuksa, J. & Janovec, V. (1995). Permutation classification of domain pairs. Ferroelectrics, 172, 343–350.Google Scholar
First citation Grell, H., Krause, C. & Grell, J. (1989). Tables of the 80 plane space groups in three dimensions. Berlin: Akademie der Wissenschaften der DDR.Google Scholar
First citation Hahn, Th. & Wondratschek, H. (1994). Symmetry of crystals. Introduction to International Tables for Crystallography Vol. A. Sofia: Heron Press.Google Scholar
First citation Hatch, D. M. & Cao, W. (1999). Determination of domain and domain wall formation at ferroic transitions. Ferroelectrics, 222, 1–10.Google Scholar
First citation Hatch, D. M., Ghose, S. & Stokes, H. (1990). Phase transitions in leucite, KAl2O6. I. Symmetry analysis with order parameter treatment and the resulting microscopic distortions. Phys. Chem. Mineral. 17, 220–227.Google Scholar
First citation Hatt, R. A. & Hatch, D. M. (1999). Order parameter profiles in ferroic phase transitions. Ferroelectrics, 226, 61–78. Google Scholar
First citation Holser, W. T. (1958a). Relation of symmetry to structure in twinning. Z. Kristallogr. 110, 249–265.Google Scholar
First citation Holser, W. T. (1958b). Point groups and plane groups in a two-sided plane and their subgroups. Z. Kristallogr. 110, 266–281.Google Scholar
First citation Houchmandzadeh, B., Lajzerowicz, J. & Salje, E. K. H. (1991). Order parameter coupling and chirality of domain walls. J. Phys. Condens. Matter, 3, 5163–5169.Google Scholar
First citation Huang, X. R., Jiang, S. S., Hu, X. B. & Liu, W. J. (1997). Theory of twinning structures in the orthorhombic phase of ferroelectric perovskites. J. Phys. Condens. Matter, 9, 4467–4482.Google Scholar
First citation IEEE Standards on Piezoelectricity (1987). IEEE Std 176–987. New York: The Institute of Electrical and Electronics Engineers, Inc.Google Scholar
First citation Indenbom, V. L. (1982). In Modern crystallography II, edited by B. K. Vainshtein, V. M. Fridkin & V. L. Indenbom, pp. 387–396. Berlin: Springer.Google Scholar
First citation International Tables for Crystallography (2002). Vol. E, Subperiodic groups, edited by V. Kopský & D. B. Litvin. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation International Tables for Crystallography (2005). Vol. A, Space-group symmetry, 5th edition, edited by Th. Hahn. Heidelberg: Springer.Google Scholar
First citation Ishibashi, Y. (1990). Structure and physical properties of domain walls. Ferroelectrics, 104, 299–310.Google Scholar
First citation Ishibashi, Y. (1992). Domain walls in crystals with incommensurate phases. II. J. Phys. Soc. Jpn, 61, 357–362.Google Scholar
First citation Ishibashi, Y. (1993). The 90°-wall in the tetragonal phase of BaTiO3-type ferroelectrics. J. Phys. Soc. Jpn, 62, 1044–1047.Google Scholar
First citation Janovec, V. (1972). Group analysis of domains and domain pairs. Czech. J. Phys. B, 22, 974–994.Google Scholar
First citation Janovec, V. (1976). Symmetry approach to domain structures. Ferroelectrics, 12, 43–53.Google Scholar
First citation Janovec, V. (1981). Symmetry and structure of domain walls. Ferroelectrics, 35, 105–110.Google Scholar
First citation Janovec, V., Litvin, D. B. & Fuksa, J. (1995). Transposable domain pairs and domain distinction. Ferroelectrics, 172, 351–359. Google Scholar
First citation Janovec, V., Richterová, L. & Litvin, D. B. (1993). Non-ferroelastic twin laws and distinction of domains in non-ferroelastic phases. Ferroelectrics, 140, 95–100.Google Scholar
First citation Janovec, V., Schranz, W., Warhanek, H. & Zikmund, Z. (1989). Symmetry analysis of domain structure in KSCN crystals. Ferroelectrics, 98, 171–189.Google Scholar
First citation Janovec, V. & Zikmund, Z. (1993). Microscopic structure of domain walls and antiphase boundaries in calomel crystals. Ferroelectrics, 140, 89–93.Google Scholar
First citation Jerphagnon, J., Chemla, D. & Bonneville, R. (1978). The description of the physical properties of condensed matter using irreducible tensors. Adv. Phys. 27, 609–650.Google Scholar
First citation Jona, F. & Shirane, G. (1962). Ferroelectric crystals. Oxford: Pergamon Press.Google Scholar
First citation Kalonji, G. (1985). A roadmap for the use of interfacial symmetry groups. J. Phys. (Paris) Colloq. 46, 49–556.Google Scholar
First citation Känzig, W. (1957). Ferroelectrics and antiferroelectrics. In Solid state physics IV, edited by F. Seitz & D. Turnbull, pp. 1–197. New York: Academic Press.Google Scholar
First citation Klassen-Neklyudova, M. V. (1964). Mechanical twinning of crystals. New York: Consultants Bureau.Google Scholar
First citation Knox, R. S. & Gold, A. (1967). Symmetry in the solid state. Introduction. New York: W. A. Benjamin.Google Scholar
First citation Koch, E. (2004). Twinning. In International tables for crystallography, Vol. C, Mathematical, physical and chemical tables, 3rd edition, edited by E. Prince, ch. 1.3. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Koňák, Č., Kopský, V. & Smutný, F. (1978). Gyrotropic phase transitions. J. Phys. Solid State Phys. 11, 2493–2518.Google Scholar
First citation Kopský, V. (1979). Tensorial covariants for the 32 crystal point groups. Acta Cryst. A35, 83–95.Google Scholar
First citation Kopský, V. (1982). Group lattices, subduction of bases and fine domain structures for magnetic point groups. Prague: Academia.Google Scholar
First citation Kopský, V. (1993). Translation normalizers of Euclidean motion groups. J. Math. Phys. 34, 1548–1576.Google Scholar
First citation Kopský, V. (2001). Tensor parameters of ferroic phase transitions I. Theory and tables. Phase Transit. 73, 1–422.Google Scholar
First citation Lines, M. E. & Glass, A. M. (1977). Principles and applications of ferroelectric and related materials. Oxford: Clarendon Press.Google Scholar
First citation Litvin, D. B. & Janovec, V. (1999). Classification of domain pairs and tensor distinction. Ferroelectrics, 222, 87–93. Google Scholar
First citation Locherer, K. R., Chrosch, J. & Salje, E. K. H. (1998). Diffuse X-ray scattering in WO3. Phase Transit. 67, 51–63.Google Scholar
First citation Mitsui, T., Tatsuzaki, I. & Nakamura, E. (1976). An introduction to the physics of ferroelectrics. New York: Gordon & Breach.Google Scholar
First citation Newnham, R. E. (1974). Domains in minerals. Am. Mineral. 59, 906–918.Google Scholar
First citation Newnham, R. E. (1975). Structure–property relations. Berlin: Springer.Google Scholar
First citation Newnham, R. E. & Cross, L. E. (1974a). Symmetry of secondary ferroics I. Mater. Res. Bull. 9, 927–934.Google Scholar
First citation Newnham, R. E. & Cross, L. E. (1974b). Symmetry of secondary ferroics II. Mater. Res. Bull. 9, 1021–1032.Google Scholar
First citation Newnham, R. E., Miller, C. S., Cross, L. E. & Cline, T. W. (1975). Tailored domain patterns in piezoelectric crystals. Phys. Status Solidi A, 32, 69–78.Google Scholar
First citation Newnham, R. E. & Skinner, D. P. Jr (1976). Polycrystalline secondary ferroics. Mater. Res. Bull. 11, 1273–1284.Google Scholar
First citation Nye, J. F. (1985). Physical properties of crystals. Oxford: Clarendon Press.Google Scholar
First citation Opechowski, W. (1986). Crystallographic and metacrystallographic groups. Amsterdam: North-Holland.Google Scholar
First citation Palmer, D. C., Putnis, A. & Salje, E. K. H. (1988). Twinning in tetragonal leucite. Phys. Chem. Mineral. 16, 298–303. Google Scholar
First citation Pond, R. C. & Bollmann, W. (1979). The symmetry and interfacial structure of bicrystals. Philos. Trans. R. Soc. London Ser. A, 292, 449–472.Google Scholar
First citation Pond, R. C. & Vlachavas, D. S. (1983). Bicrystallography. Proc. R. Soc. London Ser. A, 386, 95–143.Google Scholar
First citation Přívratská, J. & Janovec, V. (1997). Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic domains. Ferroelectrics, 204, 321–331.Google Scholar
First citation Přívratská, J. & Janovec, V. (1999). Spontaneous polarization and/or magnetization in non-ferroelastic domain walls: symmetry predictions. Ferroelectrics, 222, 23–32.Google Scholar
First citation Přívratská, J., Janovec, V. & Machonský, L. (2000). Tensor properties discriminating domain walls from non-ferroelastic domains. Ferroelectrics, 240, 83–92.Google Scholar
First citation Putnis, A. (1992). Introduction to mineral sciences. Cambridge University Press.Google Scholar
First citation Rosenman, G., Skliar, A., Eger, D., Oron, M. & Katz, M. (1998). Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals. Appl. Phys. Lett. 73, 3650–3652. Google Scholar
First citation Rosová, A. (1999). Real domain structure origination in (110) mechanical twinning in YBa2Cu3O7−y. In Studies of high temperature superconductors, Vol. 28, edited by A. Narlikar, pp. 125–148. New York: Nova Science Publishers. Google Scholar
First citation Rosová, A., Boulesteix, C. & Vávra, I. (1993). Role of microtwins in twin lamella intersections and interconnections in YBa2Cu3O7−y. Physica C, 214, 247–256. Google Scholar
First citation Rychetský, I. & Schranz, W. (1993). Antiphase boundaries in Hg2Br2 and KSCN. J. Phys. Condens. Matter, 5, 1455–1472. Google Scholar
First citation Rychetský, I. & Schranz, W. (1994). Ferroelastic domain walls in Hg2Br2 and KSCN. J. Phys. Condens. Matter, 6, 11159–11165.Google Scholar
First citation Saint-Grégoire, P. & Janovec, V. (1989). Modulated phases in crystals: Symmetry of walls and wall lattices. Example of quartz. In Nonlinear coherent structures, edited by M. Bartes & J. Léon. Lecture notes in physics, Vol. 353, pp. 117–126. Berlin: Springer.Google Scholar
First citation Saint-Grégoire, P., Janovec, V. & Kopský, V. (1997). A sample analysis of domain walls in simple cubic phase of C60. Ferroelectrics, 191, 73–78.Google Scholar
First citation Salje, E. K. H. (1990). Phase transitions in ferroelastic and co-elastic crystals, 1st edition. Cambridge University Press.Google Scholar
First citation Salje, E. K. H. (1991). Strain-related transformation twinning in minerals. Neues Jahrb. Mineral. Abh. 163, 43–86.Google Scholar
First citation Salje, E. K. H. (2000a). Mesoscopic twin patterns in ferroelastic and co-elastic minerals. Rev. Mineral. Geochem. 39, 65–84.Google Scholar
First citation Salje, E. K. H. (2000b). Ferroelasticity. Contemp. Phys. 41, 79–91.Google Scholar
First citation Sapriel, J. (1975). Domain-wall orientations in ferroelastics. Phys. Rev. B, 12, 5128–5140.Google Scholar
First citation Schlenker, J. L., Gibbs, G. V. & Boisen, M. B. (1978). Strain-tensor components expressed in terms of lattice parameters. Acta Cryst. A34, 52–54.Google Scholar
First citation Schmid, H. (1991). Polarized light microscopy of the ferroelastic domains of YBa2Cu3O7−x. Phase Transit. 30, 205–214.Google Scholar
First citation Schmid, H. (1993). Polarized light microscopy (PLM) of ferroelectric and ferroelastic domains in transmitted and reflected light. In Ferroelectric ceramics, edited by N. Setter & E. L. Colla, pp. 107–126. Basel: Birkhäuser.Google Scholar
First citation Schmid, H., Burkhardt, E., Walker, E., Brixel, W., Clin, M., Rivera, J.-P., Jorda, J.-L., François, M. & Yvon, K. (1988). Polarized light and X-ray precession study of the ferroelastic domains of YBa2Cu3O7−δ. Z. Phys. B Condens. Matter, 72, 305–322.Google Scholar
First citation Schranz, W. (1995). Domains and interfaces near ferroic phase transitions. Key Eng. Mater. 101102, 41–60. Google Scholar
First citation Scott, J. (1998). The physics of ferroelectric ceramic thin films for memory applications. Ferroelectrics Rev. 1, 1–129. Google Scholar
First citation Scott, J. (2000). Ferroelectric memories. Heidelberg: Springer.Google Scholar
First citation Shmyt'ko, I. M., Shekhtman, V. Sh., Ossipyan, Yu. A. & Afonikova, N. S. (1987). Twin structure and structure of twin boundaries in 1–2–3-O7−δ crystals. Ferroelectrics, 97, 151–170.Google Scholar
First citation Shubnikov, A. V. & Kopcik, V. A. (1974). Symmetry in science and art. New York: Plenum Press.Google Scholar
First citation Shur, V. Ya., Batchko, R. G., Rumyantsev, E. L., Miller, G. D., Fejer, M. M. & Byer, R. L. (1999). Domain engineering: periodic domain pattering in lithium niobate. Proc. 11th ISAF, pp. 399–406. Piscataway, NJ: IEEE.Google Scholar
First citation Shur, V. Ya., Gruverman, A. L., Letuchev, V. V., Rumyantsev, E. L. & Subbotin, A. L. (1989). Domain structure of lead germanate. Ferroelectrics, 98, 29–49.Google Scholar
First citation Shur, V. Ya., Rumyantsev, E. L., Nikolaeva, E. V., Shishkin, E. I., Batchko, R. G., Fejer, M. M. & Byer, R. L. (2001). Recent achievements in domain engineering in lithium niobate and lithium tantalate. Ferroelectrics, 257, 191–202.Google Scholar
First citation Shuvalov, L. A. (1988). Editor. Modern crystallography IV. Physical properties of crystals. Berlin: Springer.Google Scholar
First citation Shuvalov, L. A., Dudnik, E. F. & Wagin, S. V. (1985). Domain structure geometry of real ferroelastics. Ferroelectrics, 65, 143–152.Google Scholar
First citation Shuvalov, L. A. & Ivanov, N. R. (1964). Change in the optical activity of ferroelectric crystals on reversal of polarization. Sov. Phys. Crystallogr. 9, 290–299. (Kristallografiya, 9, 363–372.)Google Scholar
First citation Sidorkin, A. S. (2002). Domain structure in ferroelectrics and related materials. Moscow: Fizmatlit (in Russian). Google Scholar
First citation Sirotin, Yu. I. & Shaskolskaya, M. P. (1982). Fundamentals of crystal physics. Moscow: Mir.Google Scholar
First citation Smolenskii, G. A., Bokov, V. A., Isupov, V. A., Krainik, N. N., Pasynkov, R. E. & Shur, M. S. (1984). Physics of ferroelectric phenomena. New York: Gordon & Breach.Google Scholar
First citation Snoeck, E., Saint-Grégoire, P., Janovec, V. & Roucau, C. (1994). TEM study of 3-q modulated phase of quartz-type under electric field. Ferroelectrics, 155, 171–176.Google Scholar
First citation Sonin, E. B. & Tagancev, A. K. (1989). Structure and phase transitions in antiphase boundaries of improper ferroelectrics. Ferroelectrics, 98, 291–295.Google Scholar
First citation Strukov, B. A. & Levanyuk, A. P. (1998). Ferroelectric phenomena in crystals. Berlin: Springer.Google Scholar
First citation Sutton, A. P. & Balluffi, R. W. (1995). Interfaces in crystalline materials. Oxford: Clarendon Press.Google Scholar
First citation Tagancev, A. R. & Sonin, E. B. (1989). Linear singularities and their motion in improper ferroelectrics. Ferroelectrics, 98, 297–300.Google Scholar
First citation Tolédano, J.-C. & Tolédano, P. (1987). The Landau theory of phase transitions. Singapore: World Scientific. Google Scholar
First citation Tolédano, P. & Dmitriev, V. (1996). Reconstructive phase transitions. Singapore: World Scientific.Google Scholar
First citation Tomaszewski, P. E. (1992). Structural phase transitions in crystals. I. Database. II. Statistical analysis. Phase Transit. 38, 127–220, 221–228.Google Scholar
First citation Uchino, K. (2000). Ferroelectric devices. New York: Marcel Dekker.Google Scholar
First citation Vainshtein, B. K. (1994). Modern crystallography I. Symmetry of crystals. Berlin: Springer.Google Scholar
First citation Van Landuyt, J., Van Tendeloo, G., Amelinckx, S. & Walker, M. B. (1985). Interpretation of Dauphiné-twin-domain configurations resulting from the α–β phase transition in quartz and aluminium phosphate. Phys. Rev. B, 31, 2986–2992.Google Scholar
First citation Van Tendeloo, G. & Amelinckx, S. (1974). Group-theoretical considerations concerning domain formation in ordered alloys. Acta Cryst. A30, 431–440.Google Scholar
First citation Wadhawan, V. K. (1991). Ferroelasticity: introductory survey and present status. Phase Transit. 34, 3–18.Google Scholar
First citation Wadhawan, V. K. (2000). Introduction to ferroic materials. The Netherlands: Gordon and Breach.Google Scholar
First citation Wondratschek, H. & Aroyo, M. I. (2001). The application of Hermann's group [{\cal M}] in group–subgroup relations between space groups. Acta Cryst. A57, 311–320.Google Scholar
First citation Wondratschek, H. & Jeitschko, W. (1976). Twin domains and antiphase domains. Acta Cryst. A32, 664–666.Google Scholar
First citation Xu, Y. (1991). Ferroelectric materials and their applications. Amsterdam: North-Holland.Google Scholar
First citation Yin, J. & Cao, W. (2000). Domain configurations in domain engineered 0.995Pb(Zn1/3Nb2/3)O30.045PbTiO3 single crystals. J. Appl. Phys. 87, 7438–7441. Google Scholar
First citation Zheludev, I. S. (1988). Electrical properties of crystals. In Modern crystallography IV. Physical properties of crystals, edited by L. A. Shuvalov, pp. 178–266. Berlin: Springer-Verlag.Google Scholar
First citation Zieliński, P. (1990). Group-theoretical description of domains and phase boundaries in crystalline solids. Surf. Sci. Rep. 11, 179–223.Google Scholar
First citation Zikmund, Z. (1984). Symmetry of domain pairs and domain walls. Czech. J. Phys. B, 34, 932–949.Google Scholar