
3.4. DOMAIN STRUCTURES

the main results of the analysis for all possible ferroic domain
structures. More detailed information on certain points can be
found in the software GI?KoBo-1.

All these results are definite – their validity does not depend
on any particular model or approximation – and form thus a firm
basis for further more detailed quantitative treatments. ‘For the
most part, the only exact statements which can be made about a
solid state system are those which arise as a direct consequence of
symmetry alone.’ (Knox & Gold, 1967.)

The exposition starts with domain states, continues with pairs
of domain states and domain distinction, and terminates with
domain twins and walls. This is also the sequence of steps in
domain-structure analysis, which proceeds from the simplest to
more complicated objects.

In Section 3.4.2, we explain the concept of domain states (also
called variants or orientational states), define different types of
domain states (principal, ferroelastic, ferroelectric, basic), find
simple formulae for their number, and disclose their hierarchy
and relation with symmetry lowering and with order parameters
of the transition. Particular results for all possible ferroic phase
transitions can be found in synoptic Table 3.4.2.7, which lists
all possible crystallographically non-equivalent point-group
symmetry descents that may appear at a ferroic phase transition.
For each descent, all independent twinning groups (character-
izing the relation between two domain states) are given together
with the number of principal, ferroelastic and ferroelectric
domain states and other data needed in further analysis.

Section 3.4.3 deals with pairs of domain states and with the
relationship between two domain states in a pair. This relation-
ship, in mineralogy called a ‘twin law’, determines the distinction
between domain states, specifies switching processes between two
domain states and forms a starting point for discussing domain
walls and twins. We show different ways of expressing the relation
between two domain states of a domain pair, derive a classifica-
tion of domain pairs, find non-equivalent domain pairs and
determine which tensor properties are different and which are
the same in two domain states of a domain pair.

The presentation of non-equivalent domain pairs is divided
into two parts. Synoptic Table 3.4.3.4 lists all representative non-
equivalent non-ferroelastic domain pairs, and for each pair gives
the twinning groups, and the number of tensor components that
are different and that are the same in two domain states. These
numbers are given for all important property tensors up to rank
four. We also show how these data can be used to determine
switching forces between two non-ferroelastic domain states.

Then we explain specific features of ferroelastic domain pairs:
compatible (permissible) domain walls and disorientation of
domain states in ferroelastic domain twins. A list of all non-
equivalent ferroelastic domain pairs is presented in two tables.
Synoptic Table 3.4.3.6 contains all non-equivalent ferroelastic
domain pairs with compatible (coherent) domain walls. This table
gives the orientation of compatible walls and their symmetry
properties. Table 3.4.3.7 lists all non-equivalent ferroelastic
domain pairs with no compatible ferroelastic domain walls.

Column K1j in Table 3.4.2.7 specifies all representative non-
equivalent domain pairs that can appear in each particular phase
transition; in combination with Tables 3.4.3.4 and 3.4.3.6, it allows
one to determine the main features of any ferroic domain
structure.

Section 3.4.4 is devoted to domain twins and domain walls. We
demonstrate that the symmetry of domain twins and domain
walls is described by layer groups, give a classification of domain
twins and walls based on their symmetry, and present possible
layer groups of non-ferroelastic and ferroelastic domain twins
and walls. Then we discuss the properties of finite-thickness
domain walls. In an example, we illustrate the symmetry analysis
of microscopic domain walls and present conclusions that can be
drawn from this analysis about the microscopic structure of
domain walls.

The exposition is given in the continuum description with
crystallographic point groups and property tensors. In this
approach, all possible cases are often treatable and where
possible are covered in synoptic tables or – in a more detailed
form – in the software GI?KoBo-1. Although the group-theore-
tical tools are almost readily transferable to the microscopic
description (using the space groups and atomic positions), the
treatment of an inexhaustible variety of microscopic situations
can only be illustrated by particular examples.

Our attempt to work with well defined notions calls for
introducing several new, and generalizing some accepted,
concepts. Also an extended notation for the symmetry operations
and groups has turned out to be indispensable. Since there is no
generally accepted terminology on domain structures yet, we
often have to choose a term from several existing more-or-less
equivalent variants.

The specialized scope of this chapter does not cover several
important aspects of domain structures. More information can be
found in the following references. There are only two mono-
graphs on domain structures (both in Russian): Fesenko et al.
(1990) and Sidorkin (2002). The main concepts of domain
structures of ferroic materials are explained in the book by
Wadhawan (2000) and in a review by Schranz (1995). Ferroelastic
domain structures are reviewed in Boulesteix (1984) and
Wadhawan (1991), and are treated in detail by Salje (1990, 1991,
2000a,b). Different aspects of ferroelectric domain structures are
covered in books or reviews on ferroelectric crystals: Känzig
(1957), Jona & Shirane (1962), Fatuzzo & Merz (1967), Mitsui et
al. (1976), Lines & Glass (1977), Smolenskii et al. (1984),
Zheludev (1988) and Strukov & Levanyuk (1998). Applications
of ferroelectrics are described in the books by Xu (1991) and
Uchino (2000). Principles and technical aspects of ferroelectric
memories are reviewed by Scott (1998, 2000).

3.4.2. Domain states

3.4.2.1. Principal and basic domain states

As for all crystalline materials, domain structures can be
approached in two ways: In the microscopic description, a crystal
is treated as a regular arrangement of atoms. Domains differ in
tiny differences of atomic positions which can be determined only
indirectly, e.g. by diffraction techniques. In what follows, we shall
pay main attention to the continuum description, in which a
crystal is treated as an anisotropic continuum. Then the crystal
properties are described by property tensors (see Section 1.1.1)
and the crystal symmetry is expressed by crystallographic point
groups. In this approach, domains exhibit different tensor prop-
erties that enable one to visualize domains by optical or other
methods.

The domain structure observed in a microscope appears to be a
patchwork of homogeneous regions – domains – that have
various colours and shapes (see Fig. 3.4.1.1). Indeed, the usual
description considers a domain structure as a collection of
domains and contact regions of domains called domain walls.
Strictly speaking, by a domain Di one understands a connected
part of the crystal, called the domain region, which is filled with a
homogeneous low-symmetry crystal structure. Domain walls can
be associated with the boundaries of domain regions. The interior
homogeneous bulk structure within a domain region will be
called a domain state. Equivalent terms are variant or structural
variant (Van Tendeloo & Amelinckx, 1974). We shall use
different adjectives to specify domain states. In the microscopic
description, domain states associated with the primary order
parameter will be referred to as primary (microscopic, basic)
domain states. In the macroscopic description, the primary
domain states will be called principal domain states, which
correspond to Aizu’s orientation states. (An exact definition of
principal domain states is given below.)
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3. PHASE TRANSITIONS, TWINNING AND DOMAIN STRUCTURES

Further useful division of domain states is possible (though not
generally accepted): Domain states that are specified by a
constant value of the spontaneous strain are called ferroelastic
domain states; similarly, ferroelectric domain states exhibit
constant spontaneous polarization etc. Domain states that differ
in some tensor properties are called ferroic or tensorial domain
states etc. If no specification is given, the statements will apply to
any of these domain states.

A domain Di is specified by a domain state Sj and by domain
region Bk: Di ¼ DiðSj;BkÞ. Different domains may possess the
same domain state but always differ in the domain region that
specifies their shape and position in space.

The term ‘domain’ has also often been used for a domain state.
Clear distinction of these two notions is essential in further
considerations and is illustrated in Fig. 3.4.2.1. A ferroelectric
domain structure (Fig. 3.4.2.1a) consists of six ferroelectric
domains D1, D2, . . ., D6 but contains only two domain states S1, S2

characterized by opposite directions of the spontaneous polar-
ization depicted in Fig. 3.4.2.1(d). Neighbouring domains have
different domain states but non-neighbouring domains may
possess the same domain state. Thus domains with odd serial
number have the domain state S1 (spontaneous polarization
‘down’), whereas domains with even number have domain state
S2 (spontaneous polarization ‘up’).

A great diversity of observed domain structures are connected
mainly with various dimensions and shapes of domain regions,
whose shapes depend sensitively on many factors (kinetics of the
phase transition, local stresses, defects etc.). It is, therefore,
usually very difficult to interpret in detail a particular observed
domain pattern. Domain states of domains are, on the other
hand, governed by simple laws, as we shall now demonstrate.

We shall consider a ferroic phase transition with a symmetry
lowering from a parent (prototypic, high-symmetry) phase with
symmetry described by a point group G to a ferroic phase with
the point-group symmetry F1, which is a subgroup of G. We shall
denote this dissymmetrization by a group–subgroup symbol
G � F1 (or G + F1 in Section 3.1.3) and call it a symmetry descent
or dissymmetrization. Aizu (1970a) calls these symmetry descents
species and uses the letter F instead of the symbol �.

As an illustrative example, we choose a phase transition with
parent symmetry G ¼ 4z=mzmxmxy and ferroic symmetry
F1 ¼ 2xmymz (see Fig. 3.4.2.2). Strontium bismuth tantalate
(SBT) crystals, for instance, exhibit a phase transition with this
symmetry descent (Chen et al., 2000). Symmetry elements in the
symbols of G and F1 are supplied with subscripts specifying the
orientation of the symmetry elements with respect to the refer-
ence coordinate system. The necessity of this extended notation
is exemplified by the fact that the group G ¼ 4z=mzmxmxy has six
subgroups with the same ‘non-oriented’ symbol mm2: mxmy2z,
2xmymz, mx2ymz, mx�yymxy2z, 2x�yymxymz, mx�yy2xymz. Lower indices
thus specify these subgroups unequivocally and the example
illustrates an important rule of domain-structure analysis: All
symmetry operations, groups and tensor components must be
related to a common reference coordinate system and their
orientation in space must be clearly specified.

The physical properties of crystals in the continuum descrip-
tion are expressed by property tensors. As explained in Section
1.1.4, the crystal symmetry reduces the number of independent
components of these tensors. Consequently, for each property
tensor the number of independent components in the low-
symmetry ferroic phase is the same or higher than in the high-
symmetry parent phase. Those tensor components or their linear
combinations that are zero in the high-symmetry phase and
nonzero in the low-symmetry phase are called morphic tensor
components or tensor parameters and the quantities that appear
only in the low-symmetry phase are called spontaneous quantities
(see Section 3.1.3.2). The morphic tensor components and
spontaneous quantities thus reveal the difference between the
high- and low-symmetry phases. In our example, the symmetry
F1 ¼ 2xmymz allows a nonzero spontaneous polarization P

ð1Þ
0

¼ ðP; 0; 0Þ, which must be zero in the high-symmetry phase with
G ¼ 4z=mzmxmxy.

We shall now demonstrate in our example that the symmetry
lowering at the phase transition leads to the existence of several
equivalent variants (domain states) of the low-symmetry phase.
In Fig. 3.4.2.2, the parent high-symmetry phase is represented in
the middle by a dashed square that is a projection of a square
prism with symmetry 4z=mzmxmxy. A possible variant of the low-
symmetry phase can be represented by an oblong prism with a
vector representing the spontaneous polarization. In Fig. 3.4.2.2,
the projection of this oblong prism is drawn as a rectangle which
is shifted out of the centre for better recognition. We denote by S1

a homogeneous low-symmetry phase with spontaneous polar-
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Fig. 3.4.2.1. Hierarchy in domain-structure analysis. (a) Domain structure
consisting of domains D1;D2; . . . ;D6 and domain walls W12 and W21; (b)
domain twin and reversed twin (with reversed order of domain states); (c)
domain pair consisting of two domain states S1 and S2; (d) domain states S1

and S2.

Fig. 3.4.2.2. Exploded view of single-domain states S1, S2, S3 and S4 (solid
rectangles with arrows of spontaneous polarization) formed at a phase
transition from a parent phase with symmetry G ¼ 4z=mzmxmxy to a ferroic
phase with symmetry F1 ¼ 2xmymz. The parent phase is represented by a
dashed square in the centre with the symmetry elements of the parent group
G ¼ 4z=mzmxmxy shown.
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ization P
ð1Þ
0 ¼ ðP; 0; 0Þ and with symmetry F1 = 2xmymz. Let us,

mentally, increase the temperature to above the transition
temperature and then apply to the high-symmetry phase an
operation 2z, which is a symmetry operation of this high-
symmetry phase but not of the low-symmetry phase. Then
decrease the temperature to below the transition temperature.
The appearance of another variant of the low-symmetry phase S2

with spontaneous polarization P
ð2Þ
0 ¼ ð�P; 0; 0Þ obviously has the

same probability of appearing as had the variant S1. Thus the two
variants of the low-symmetry phase S1 and S2 can appear with the
same probability if they are related by a symmetry operation
suppressed (lost) at the transition, i.e. an operation that was a
symmetry operation of the high-symmetry phase but is not a
symmetry operation of the low-symmetry phase S1. In the same
way, the lost symmetry operations 4z and 43

z generate from S1 two
other variants, S3 and S4, with spontaneous polarizations ð0;P; 0Þ
and ð0;�P; 0Þ, respectively. Variants of the low-symmetry phase
that are related by an operation of the high-symmetry group G
are called crystallographically equivalent (in G) variants. Thus we
conclude that crystallographically equivalent (in G) variants of the
low-symmetry phase have the same chance of appearing.

We shall now make similar considerations for a general ferroic
phase transition with a symmetry descent G � F1. By the state S
of a crystal we shall understand, in the continuum description, the
set of all its properties expressed by property (matter) tensors in
the reference Cartesian crystallophysical coordinate system of
the parent phase (see Example 3.2.3.9 in Section 3.2.3.3.1). A
state defined in this way may change not only with temperature
and external fields but also with the orientation of the crystal in
space.

We denote by S1 a state of a homogeneous ferroic phase. If we
apply to S1 a symmetry operation gi of the group G, then the
ferroic phase in a new orientation will have the state Sj, which
may be identical with S1 or different. Using the concept of group
action (explained in detail in Section 3.2.3.3.1) we express this
operation by a simple relation:

gjS1 ¼ Sj; gj 2 G: ð3:4:2:1Þ

Let us first turn our attention to operations fj 2 G that do not
change the state S1:

fjS1 ¼ Sj; fj 2 G: ð3:4:2:2Þ

The set of all operations of G that leave S1 invariant form a group
called a stabilizer (or isotropy group) of a state S1 in the group G.
This stabilizer, denoted by IGðS1Þ, can be expressed explicitly in
the following way:

IGðS1Þ � fg 2 GjgS1 ¼ S1g; ð3:4:2:3Þ

where the right-hand part of the equation should be read as ‘a set
of all operations of G that do not change the state S1’ (see Section
3.2.3.3.2).

Here we have to explain the difference between the concept of
a stabilizer of an object and the symmetry of that object. By the
symmetry group F of an object one understands the set of all
operations (isometries) that leave this object S invariant. The
symmetry group F of an object is considered to be an inherent
property that does not depend on the orientation and position of
the object in space. (The term eigensymmetry is used in Chapter
3.3 for symmetry groups defined in this way.) In this case, the
symmetry elements of F are ‘attached’ to the object.

A stabilizer describes the symmetry properties of an object in
another way, in which the object and the group of isometries are
decoupled. One is given a group G, the symmetry elements of
which have a defined orientation in a fixed reference system. The
object can have any orientation in this reference system. Those
operations of G that map the object in a given orientation onto
itself form the stabilizer IGðS1Þ of Si in the group G. In this case,

the stabilizer depends on the orientation of the object in space
and is expressed by an ‘oriented’ group symbol F1 with subscripts
defining the orientation of the symmetry elements of F1. Only for
certain ‘prominent’ orientations will the stabilizer acquire a
symmetry group of the same crystal class (crystallographic point
group) as the eigensymmetry of the object.

We shall define a single-domain orientation as a prominent
orientation of the crystal in which the stabilizer IGðS1Þ of its state
S1 is equal to the symmetry group F1 which is, after removing
subscripts specifying the orientation, identical with the eigen-
symmetry of the ferroic phase:

IGðS1Þ ¼ F1: ð3:4:2:4Þ

This equation thus declares that the crystal in the state S1 has a
prominent single-domain orientation.

The concept of the stabilizer allows us to identify the ‘eigen-
symmetry’ of a domain state (or an object in general) Si with the
crystallographic class (non-oriented point group) of the stabilizer
of this state in the group of all rotations O(3), IOð3ÞðSiÞ.

Since we shall further deal mainly with states of the ferroic
phase in single-domain orientations, we shall use the term ‘state’
for a ‘state of the crystal in a single-domain orientation’, unless
mentioned otherwise. Then the stabilizer IGðS1Þ will often be
replaced by the group F1, although all statements have been
derived and hold for stabilizers.

The difference between symmetry groups of a crystal and
stabilizers will become more obvious in the treatment of
secondary domain states in Section 3.4.2.2 and in discussing
disoriented ferroelastic domain states (see Section 3.4.3.6.3).

As we have seen in our illustrative example, the suppressed
operations generate from the first state S1 other states. Let gj be
such a suppressed operation, i.e. gj 2 G but gj 62 F1. Since all
operations that retain S1 are collected in F1, the operation gj must
transform S1 into another state Sj,

gjS1 ¼ Sj 6¼ S1; gj 2 G; gj 62 F1; ð3:4:2:5Þ

and we say that the state Sj is crystallographically equivalent (in

G) with the state S1, Sj �
G

S1.
We define principal domain states as crystallographically

equivalent (in G) variants of the low-symmetry phase in single-
domain orientations that can appear with the same probability in
the ferroic phase. They represent possible macroscopic bulk
structures of (1) ferroic single-domain crystals, (2) ferroic
domains in non-ferroelastic domain structures (see Section
3.4.3.5), or (3) ferroic domains in any ferroic domain structure, if
all spontaneous strains are suppressed [this is the so-called parent
clamping approximation (PCA), see Section 3.4.2.5]. In what
follows, any statement formulated for principal domain states or
for single-domain states applies to any of these three situations.
Principal domain states are identical with orientation states (Aizu,
1969) or orientation variants (Van Tendeloo & Amelinckx, 1974).
The adjective ‘principal’ distinguishes these domain states from
primary (microscopic, basic – see Section 3.4.2.5) domain states
and secondary domain states, defined in Section 3.4.2.2, and
implies that any two of these domain states differ in principal
tensor parameters (these are linear combinations of morphic
tensor components that transform as the primary order para-
meter of an equitranslational phase transition with a point-group
symmetry descent G � F1, see Sections 3.1.3.2 and 3.4.2.3). A
simple criterion for a principal domain state S1 is that its stabilizer
in G is equal to the symmetry F1 of the ferroic phase [see
equation (3.4.2.4)].

When one applies to a principal domain state S1 all operations
of the group G, one gets all principal domain states that are
crystallographically equivalent with S1. The set of all these states
is denoted GS1 and is called an G-orbit of S1 (see also Section
3.2.3.3.3),
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GS1 ¼ fS1; S2; . . . ; Sng: ð3:4:2:6Þ

In our example, the G-orbit is 4z=mzmxmxyS1 ¼ fS1; S2; S3; S4g.
Note that any operation g from the parent group G leaves the

orbit GS1 invariant since its action results only in a permutation
of all principal domain states. This change does not alter the
orbit, since the orbit is a set in which the sequence (order) of
objects is irrelevant. Therefore, the orbit GS1 is invariant under
the action of the parent group G, GGS1 ¼ GS1.

A ferroic phase transition is thus a paradigmatic example of the
law of symmetry compensation (see Section 3.2.2): The dissym-
metrization of a high-symmetry parent phase into a low-
symmetry ferroic phase produces variants of the low-symmetry
ferroic phase (single-domain states). Any two single-domain
states are related by some suppressed operations of the parent
symmetry that are missing in the ferroic symmetry and the set of
all single-domain states (G-orbit of domain states) recovers the
symmetry of the parent phase. If the domain structure contains
all domain states with equal partial volumes then the average
symmetry of this polydomain structure is, in the first approx-
imation, identical to the symmetry of the parent phase.

Now we find a simple formula for the number n of principal
domain states in the orbit GS1 and a recipe for an efficient
generation of all principal domain states in this orbit.

The fact that all operations of the group IGðS1Þ ¼ F1 leave S1

invariant can be expressed in an abbreviated form in the
following way [see equation (3.2.3.70)]:

F1S1 ¼ S1: ð3:4:2:7Þ

We shall use this relation to derive all operations that transform
S1 into Sj ¼ gjS1:

gjS1 ¼ gjðF1S1Þ ¼ ðgjF1ÞS1 ¼ Sj; gj 2 G: ð3:4:2:8Þ

The second part of equation (3.4.2.8) shows that all lost opera-
tions that transform S1 into Sj are contained in the left coset gjF1

(for left cosets see Section 3.2.3.2.3).
It is shown in group theory that two left cosets have no

operation in common. Therefore, another left coset gkF1 gener-
ates another principal domain state Sk that is different from
principal domain states S1 and Sj. Equation (3.4.2.8) defines,
therefore, a one-to-one relation between principal domain states
of the orbit GS1 and left cosets of F1 [see equation (3.2.3.69)],

Sj $ gjF1; F1 ¼ IGðS1Þ; j ¼ 1; 2; . . . ; n: ð3:4:2:9Þ

From this relation follow two conclusions:
(1) The number n of principal domain states equals the number

of left cosets of F1. All different left cosets of F1 constitute the
decomposition of the group G into left cosets of F1 [see equation
(3.2.3.19)],

G ¼ g1F1 [ g2F1 [ . . . [ gjF1 [ . . . [ gnF1; ð3:4:2:10Þ

where the symbol [ is a union of sets and the number n of left
cosets is called the index of G in F1 and is denoted by the symbol
½G : F1�. Usually, one chooses for g1 the identity operation e; then
the first left coset equals F1. Since each left coset contains jF1j

operations, where jF1j is number of operations of F1 (order of
F1), the number of left cosets in the decomposition (3.4.2.10) is

n ¼ ½G : F1� ¼ jGj : jF1j; ð3:4:2:11Þ

where jGj; jF1j are orders of the point groups G;F1, respectively.
The index n is a quantitative measure of the degree of dissym-
metrization G � F1. Thus the number of principal domain states
in orbit GS1 is equal to the index of F1 in G, i.e. to the number of
operations of the high-symmetry group G divided by the number
of operations of the low-symmetry phase F1. In our illustrative
example we get n ¼ j4z=mzmxmxyj : j2xmymzj ¼ 16 : 4 ¼ 4.

The basic formula (3.4.2.11) expresses a remarkable result: the
number n of principal domain states is determined by how many
times the number of symmetry operations increases at the tran-
sition from the low-symmetry group F1 to the high-symmetry
group G, or, the other way around, the fraction 1

n is a quantitative
measure of the symmetry decrease from G to F1, jF1j ¼

1
n jGj.

Thus it is not the concrete structural change, nor even the parti-
cular symmetries of both phases, but only the extent of dissym-
metrization that determines the number of principal domain states.
This conclusion illustrates the fundamental role of symmetry in
domain structures.

(2) Relation (3.4.2.9) yields a recipe for calculating all principal
domain states of the orbit GS1: One applies successively to the
first principal domain states S1 the representatives of all left
cosets of F1:

GS1 ¼ fS1; g2S1; . . . ; gjS1; . . . ; gnS1g; ð3:4:2:12Þ

where the operations g1 ¼ e; g2; . . . ; gj; . . . ; gn are the repre-
sentatives of left cosets in the decomposition (3.4.2.10) and e is an
identity operation. We add that any operation of a left coset can
be chosen as its representative, hence the operation gj can be
chosen arbitrarily from the left coset gjF1, j ¼ 1; 2; . . . ; n.

This result can be illustrated in our example. Table 3.4.2.1
presents in the first column the four left cosets gjf2xmymzg of the
group F1 ¼ 2xmymz. The corresponding principal domain states
Sj, j ¼ 1; 2; 3; 4; and the values of spontaneous polarization in
these principal domain states are given in the second and the
third columns, respectively. It is easy to verify in Fig. 3.4.2.2 that
all operations of each left coset transform the first principal
domain state S1 into one principal domain state Sj, j ¼ 2; 3; 4:

The left coset decompositions of all crystallographic point
groups and their subgroup symmetry are available in the software
GI?KoBo-1, path: Subgroups\View\Twinning Group.

Let us turn briefly to the symmetries of the principal domain
states. From Fig. 3.4.2.2 we deduce that two domain states S1 and
S2 in our illustrative example have the same symmetry, F1 ¼

F2 ¼ 2xmymz, whereas two others S3 and S4 have another
symmetry, F3 ¼ F4 ¼ mx2ymz. We see that symmetry does not
specify the principal domain state in a unique way, although a
principal domain state Sj has a unique symmetry Fi ¼ IGðSjÞ.

It turns out that if gj transforms S1 into Sj, then the symmetry
group Fj of Sj is conjugate by gj to the symmetry group F1 of S1

[see Section 3.2.3.3, Proposition 3.2.3.13 and equation (3.2.3.55)]:

if Sj ¼ gjS1; then Fj ¼ gjF1g�1
j : ð3:4:2:13Þ

One can easily check that in our example each operation of the
second left coset of F1 ¼ 2xmymz (second row in Table 3.4.2.1)
transforms F1 ¼ 2xmymz into itself, whereas operations from the
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Table 3.4.2.1. Left and double cosets, principal and secondary domain states and their tensor parameters for the phase transition with G ¼ 4z=mzmxmxy and
F1 ¼ 2xmymz

Left cosets gjS1 Principal domain states Secondary domain states

1 2x my mz S1 ðP00Þ ð000g00Þ R1 u1 � u2 Q11 � Q22

�11 mx 2y 2z S2 ð�P00Þ ð000�g00Þ

2xy 4z
�443

z mx�yy S3 ð0P0Þ ð0000�g0Þ R2 u2 � u1 Q22 � Q11

2x�yy 43
z

�44z mxy S4 ð0�P0Þ ð0000g0Þ
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third and fourth left cosets yield F3 ¼ F4 ¼ mx2ymz. We shall
return to this issue again at the end of Section 3.4.2.2.3.

3.4.2.2. Secondary domain states, partition of domain states

In this section we demonstrate that any morphic (spontaneous)
property appears in the low-symmetry phase in several equiva-
lent variants and find what determines their number and basic
properties.

As we saw in Fig. 3.4.2.2, the spontaneous polarization – a
principal tensor parameter of the 4z=mzmxmxy � 2xmymz phase
transition – can appear in four different directions that define
four principal domain states. Another morphic property is a
spontaneous strain describing the change of unit-cell shape; it is
depicted in Fig. 3.4.2.2 as a transformation of a square into a
rectangle. This change can be expressed by a difference between
two strain components u11 � u22 ¼ �ð1Þ, which is a morphic tensor
parameter since it is zero in the parent phase and nonzero in the
ferroic phase. The quantity �ð1Þ ¼ u11 � u22 is a secondary order
parameter of the transition 4z=mzmxmxy � 2xmymz (for
secondary order parameters see Section 3.1.3.2).

From Fig. 3.4.2.2, we see that two domain states S1 and S2 have
the same spontaneous strain, whereas S3 and S4 exhibit another
spontaneous strain �ð2Þ ¼ u22 � u11 ¼ ��ð1Þ. Thus we can infer
that a property ‘to have the same value of spontaneous strain’
divides the four principal domain states S1, S2, S3 and S4 into two
classes: S1 and S2 with the same spontaneous strain �ð1Þ and S3

and S4 with the same spontaneous strain �ð2Þ ¼ ��ð1Þ. Sponta-
neous strain appears in two ‘variants’: �ð1Þ and �ð2Þ ¼ ��ð1Þ.

We can define a ferroelastic domain state as a state of the
crystal with a certain value of spontaneous strain �, irrespective
of the value of the principal order parameter. Values � ¼ �ð1Þ and
�ð2Þ ¼ ��ð1Þ thus specify two ferroelastic domain states R1 and
R2, respectively. The spontaneous strain in this example is a
secondary order parameter and the ferroelastic domain states can
therefore be called secondary domain states.

An algebraic version of the above consideration can be
deduced from Table 3.4.2.1, where to each principal domain state
(given in the second column) there corresponds a left coset of
F1 ¼ 2xmymz (presented in the first column). Thus to the parti-
tion of principal domain states into two subsets

fS1; S2; S3; S4g ¼ fS1; S2g�ð1Þ [ fS3; S4g�ð2Þ ; ð3:4:2:14Þ

there corresponds, according to relation (3.4.2.9), a partition of
left cosets

4z=mzmxmxy

¼ ff2xmymzg [
�11f2xmymzgg [ f2xyf2xmymzg [ 2xyf2xmymzgg

¼ mxmymz [ 2xyfmxmymzg; ð3:4:2:15Þ

where we use the fact that the union of the first two left cosets of
2xmymz is equal to the group mxmymz. This group is the stabilizer
of the first ferroelastic domain state R1, IGðR1Þ ¼ mxmymz. Two
left cosets of mxmymz correspond to two ferroelastic domain
states, R1 and R2, respectively. Therefore, the number na of
ferroelastic domain states is equal to the number of left cosets of
mxmymz in 4z=mzmxmxy, i.e. to the index of mxmymz in
4z=mzmxmxy, na ¼ ½4z=mzmxmxy : mxmymz� ¼ j4z=mzmxmxyj :
jmxmymzj ¼ 16 : 8 ¼ 2, and the number da of principal domain
states in one ferroelastic domain state is equal to the index of
2xmymz in mxmymz, i.e. da ¼ ½mxmymz: 2xmymz� ¼ jmxmymzj :
j2xmymzj ¼ 8 : 4 ¼ 2.

A generalization of these considerations, performed in Section
3.2.3.3.5 (see especially Proposition 3.2.3.30 and Examples
3.2.3.10 and 3.2.3.33), yields the following main results.

Assume that �ð1Þ is a secondary order parameter of a transition
with symmetry descent G � F1. Then the stabilizer L1 of this
parameter IGð�

ð1ÞÞ � L1 is an intermediate group,

F1 � IGð�
ð1ÞÞ � L1 � G: ð3:4:2:16Þ

Lattices of subgroups in Figs. 3.1.3.1 and 3.1.3.2 are helpful in
checking this condition.

The set of n principal domain states (the orbit GS1) splits into
n� subsets

n� ¼ ½G : L1� ¼ jGj : jL1j: ð3:4:2:17Þ

Each of these subsets consists of d� principal domain states,

d� ¼ ½L1 : F1� ¼ jL1j : jF1j: ð3:4:2:18Þ

The number d� is called a degeneracy of secondary domain states.
The product of numbers n� and d� is equal to the number n of

principal domain states [see equation (3.2.3.26)]:

n�d� ¼ n: ð3:4:2:19Þ

Principal domain states from each subset have the same value
of the secondary order parameter �ðjÞ; j ¼ 1; 2; . . . ; n� and any
two principal domain states from different subsets have different
values of �ðjÞ. A state of the crystal with a given value of the
secondary order parameter �ðjÞ will be called a secondary domain
state Rj; j ¼ 1; 2; . . . ; n�. Equivalent terms are degenerate or
compound domain state.

In a limiting case L1 ¼ F1, the parameter �ð1Þ is identical with
the principal tensor parameter and there is no degeneracy,
d� ¼ 1.

Secondary domain states R1;R2; . . . ;Rj; . . . ;Rn�
are in a one-

to-one correspondence with left cosets of L1 in the decomposi-
tion

G ¼ h1L1 [ h2L1 [ . . . [ hjL1 [ . . . [ hn�
L1; ð3:4:2:20Þ

therefore

Rj ¼ hjR1; j ¼ 1; 2; . . . ; n�: ð3:4:2:21Þ

Principal domain states of the first secondary domain state R1

can be determined from the first principal domain state S1:

Sk ¼ pkS1; k ¼ 1; 2; . . . ; d�; ð3:4:2:22Þ

where pk is the representative of the kth left coset of F1 of the
decomposition

L1 ¼ p1F1 [ p2F1 [ . . . [ pkF1 [ . . . [ pd�
F1: ð3:4:2:23Þ

The partition of principal domain states according to a
secondary order parameter offers a convenient labelling of
principal domain states by two indices j; k, where the first index j
denotes the sequential number of the secondary domain state
and the second index k gives the sequential number of the
principal domain state within the jth secondary domain state [see
equation (3.2.3.79)]:

Sjk ¼ hjpkS11; S11 ¼ S1; j ¼ 1; 2; . . . ; n�; k ¼ 1; 2; . . . ; d�;

ð3:4:2:24Þ

where hj and pk are representatives of the decompositions
(3.4.2.20) and (3.4.2.23), respectively.

The secondary order parameter � can be identified with a
principal order parameter of a phase transition with symmetry
descent G � L1 (see Section 3.4.2.3). The concept of secondary
domain states enables one to define domain states that are
characterized by a certain spontaneous property. We present the
three most significant cases of such ferroic domain states.

3.4.2.2.1. Ferroelastic domain state

The distinction ferroelastic–non-ferroelastic is a basic division
in domain structures. Ferroelastic transitions are ferroic transi-
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