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Introduction

We strongly recommend that the reader prints this document and familiarizes them-
selves with individual points of the program by following this manual while using the
program. It is assumed that the reader has an elementary knowledge of group theory
but the basic concepts are defined and fundamental statements are given in the following
text, as a rule without proofs. The program is designed for crystallographers and mater-
ial physicists, with special emphasis on structural phase transitions and the analysis of
domains, domain pairs and domain twins.

The information is structured in the following manner:

1. Information relevant to geometric classes.
2. Information relevant to specific groups of these classes.
3. Information relevant to symmetry descents (group–subgroup relations).
4. Information relevant to domain pairs.

The program provides general information of a group-theoretical nature about the
crystallographic point groups and their representations such as class structure, class mul-
tiplication, character tables and Kronecker products of irreducible representations. An
explicit and standardized form of irreducible representations (ireps) is used throughout
as is appropriate for their use in the theory of phase transitions and related problems.
The application of ireps is facilitated by the use of so-called “typical variables”, which
represent variables of all possible transformation properties under the action of crystal-
lographic groups. The idea is simple and similar to the “symbolic method” of the old
invariant theory (Weitzenböck, 1923). Tables of Clebsch–Gordan products are presented
which enable the calculation of “tensorial” and “polynomial covariants”, where the word
“covariant”, used with this meaning for the first time by Weyl (1946), replaces the more
customary terms “symmetry-adapted bases” or “form-invariant bases”. Tables of tensorial
covariants and of the “extended integrity bases” are provided, which form a versatile basis
for calculation of tensor characteristics of domains as well as of various interactions.

The central part of the program contains extensive information about all possible
symmetry descents within the classical crystallographic point groups. This information
is given in a standardized form; the set of subgroups of each crystallographic group in
a standard orientation is displayed in the form of the “lattice” of its subgroups, which
serves as a menu for the choice of descents. For each symmetry descent the form of
tensors up to fourth rank for the parent group is given and each is followed by information
about onsetting components of these tensors in the first domain state. “Principal tensor
parameters” which transform like the “primary” (“proper”, “full”) order parameter of an
equitranslational transition and “secondary” (“improper”, “partial”) tensor parameters
are distinguished in this description. The principal parameters can be considered in a
certain sense as the “cause” of the symmetry descent while secondary parameters are its
“consequence”. For each symmetry descent a list of polynomials in typical variables is
given which serves for constructing the correct form of the Landau potential, invariant
under the parent symmetry. The list contains four items:
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(i) Integrity bases: Polynomials in components of the primary order parameter from which
the main part of the Landau potential is constructed as an invariant function in these
components.
(ii) Faint interactions: Coupling of secondary order parameters with the primary param-
eter.
(iii) Electric switching interactions: Coupling of all onsetting parameters with an external
electric field.
(iv) Elastic switching interactions: Coupling of all onsetting parameters with an external
stress.

The tables of symmetry descents provide the background for a complete tensorial
analysis of nonmagnetic “ferroic” phase transitions including tensor distinction of domain
states. In the case of “completely transposable pairs”, the distinction of two domain states
is clearly seen directly from tables. More general consideration is possible with the use
of the method of so-called “Conversion equations” which has been developed during the
preparation of this software (Kopský, 2001b,c,d; Kopský & Litvin, 2001). For each sym-
metry descent information is also provided about the decomposition of the parent group
into left, right and double cosets of the ferroic group and about normalizers of this group
in the parent group.

This is equivalent to a complete analysis of tensor properties of domain states in
“equitranslational” phase transitions where only ferroic domains appear (“antiphase” or
“translational” domains are absent). The results are, however, also partially applicable to
non-equitranslational ferroic transitions.

To facilitate the consideration of equitranslational phase transitions, the program is
supplemented by an option which converts the lattices of subgroups of crystallographic
point groups into the lattices of equitranslational subgroups of the space groups.

This manual concludes with seven tabular appendices. Appendix A compares various
notations of point-group operations with the standard one used here. In Appendix B the
embellished Schönflies and Hermann–Mauguin symbols of oriented groups as used in the
software are specified. Isomorphisms which define ireps of groups are given in Appendix
C and certain symbols used to abbreviate polynomials are given in Appendix D. Appendix
E will be useful to those who wish to extend the results to a complete analysis of domain
states. It contains basic conversion equations from which all others can be obtained by
substitution of other symbols. A synoptic list of symmetry descents is given in Appendix
F. Finally, in Appendix G nonstandard lattice letters which prove to be useful in Hermann–
Mauguin symbols of equitranslational subgroups of the space groups are given.
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A Software Guide
The following is a brief introductory guide to the software. It is followed by an explan-

ation of the basic concepts, a large fraction of which is either not yet available in group-
theoretical textbooks or is to be found under different names. The reader will hopefully
find that the unification and standardization of the nomenclature and symbolism is jus-
tified by its use. Tables are accompanied by help files which will remind the user of the
meaning of the information in each table. If in doubt, the user should return to the text
of this Manual.

Getting started! The 32 crystallographic geometric classes are the starting point of
the program. On opening the program, a panel appears with the names of the crystallo-
graphic systems under the heading “Geometric classes”. Clicking on a system displays the
geometric classes of the system in a tree form. Geometric classes are denoted by Schönflies,
Hermann–Mauguin and Shubnikov symbols. Each of the notations can be activated to
replace the current default. Shubnikov symbols are used only at this point for correlation
with older Russian literature. If you run across such a symbol in the literature, you may
start with it, change the notation and continue your search for further information.

The panel contains an originally empty right-hand part divided into an upper and
a lower section. Clicking on a geometric class produces in this part the symbols of all
specifically oriented point groups of the class which are used in the software; the upper
section contains the symbol of a group in its standard orientation. This is the orientation
of the parent point group in the tables of ferroic transitions which constitute the central
part of this program. For the majority of cases, one standard orientation is chosen; the
reasons why more than one choice is given for six geometric classes are discussed below.
Groups of the geometric class in nonstandard orientations are listed in the lower section;
these are the groups which appear as subgroups of standard parent groups.

Clicking the left button of the mouse activates the consideration of the group in its
standard orientation. A subsequent click of the right button reveals a pull-down menu
which offers various types of information. You should either hold down the right button
and release it on the desired menu item or release it while outside the menu and choose
the item with a click of the left button. The menu contains the following items:

Basic info: Displays a table with basic information about the geometric class the group
belongs to, including specification of the standard orientations.

Group elements: Displays the Group Calculator, which lists the group elements as symbols
of the keys either in standard or spectroscopic notation. The calculator performs the
calculation of products (strings) of up to ten group elements via left or right multiplication.

These two options are available for groups in standard and nonstandard orientations.
Further options are available only for groups in the standard orientation.

Correlation Stnd./Spectro.: Displays tables which correlate the standard symbols of groups,
group elements, classes of ireps (irreducible representations) and conjugacy classes (for
non-Abelian groups) with spectroscopic symbols.

Class structure: Displays classes of conjugate elements and defines their symbols.

Class mult. table: Displays a class multiplication table.

Character table: Displays characters of irreducible representations.

Kronecker products: Displays Kronecker products of characters.
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In the last four menu items it is possible to switch between standard and spectroscopic
notation. In the following menu items, the spectroscopic symbols appear only as auxiliary
reference symbols.

Ireps and standard variables:

brief: Displays the matrices of group generators for the matrix ireps of the group and
defines symbols of these ireps and the meaning of the standard variables. For groups
up to the orthorhombic system, for one-dimensional and for three-dimensional ireps, the
choice of matrix ireps and of standard variables is unique. For two-dimensional R-ireps
of groups of higher systems there are two options (cf. Standard transformations):

complex: Standard typical variables (ξα, ηα) are used for the complex form of two-
dimensional C-ireps which are reducible in uniaxial and tetrahedral groups.

real: Real standard typical variables (xα, yα) for equivalent R-ireps are used.

full: Displays the matrices of all group elements for the matrix ireps of the group and
defines symbols of these ireps and the meaning of the standard variables. The information
often extends over several pages. Continuation of the table here as well as in other files is
indicated by the symbols =⇒ =⇒ at the bottom of one page and (cont.N) at the top of
the next page; the last page contains (cont.N/end). One can move forward or backward
through these pages using the arrows in the upper bar of the window.

Kernels of ireps are given in both cases (brief and full). Relations between R-ireps and
C-ireps are given at the bottom of tables in both cases for point groups of higher than
orthorhombic system.

Clebsch–Gordan products: Displays Clebsch–Gordan products of covariants in terms of
the standard typical variables. For groups up to the orthorhombic system, one table of
Clebsch–Gordan products is produced. For groups of higher systems, two options are
given:

complex: in terms of variables (ξα, ηα),
real: in terms of variables (xα, yα).

Tensorial covariants: Displays tensorial covariants for tensors up to rank four.

Subgroups: The choice of this menu item displays an interactive panel which consists

of two parts. In the upper part are displayed boxes labelled in front by R-ireps of the
group G in spectroscopic notation. Real typical variables representing vectors of the
typical carrier spaces are given inside each box. If the R-irep is one-dimensional, the
symbol of the respective typical variable is given in the box. If the R-irep is two- or
three-dimensional, scrolling through the box reveals all vectors of special symmetry and
the general vector of the space belonging to the R-irep.

The lattice of subgroups F of a parent point group G is displayed in the panel either
in Schönflies or in Hermann–Mauguin notation. Groups are framed and sets of conjugate
subgroups are listed in frames which are stacked like a pile of sheets of paper. Consecu-
tive clicks on the pile brings the next subgroup of the set to the top. This is useful when
considering equitranslational subgroups. The pull-down menu Graph provides options for
manipulating the lattice. Each subgroup can be selected by holding down the left mouse
button and moved to another place, the new arrangement can be recorded as the new
default or reset to the original default. The lattice and the boxes serve as a menu for
displaying further information.
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Direct Landau problem: Clicking on a vector in the box reveals its stabilizer - epikernel of
the R-irep; the frame with the subgroup turns into an inverse display: white letters on a
black background. This is equivalent to the solution of the direct Landau problem. Click-
ing on a second vector while keeping the ctrl button depressed leads to the intersection
of both epikernels.

Integrity bases: This option is available either under the pull-down menu View or directly
at the box when the box of an irep is activated by previous choice of any of its vectors. It
displays the extended integrity bases of the respective irreducible matrix group in terms
of the components of a general vector of the space.

Domain: Clicking on a normal subgroup H or on any of the set of conjugate subgroups Fi

activates further options. The option Domain, available either under the pull-down menu
View or directly at the subgroup in the case of normal subgroups, produces a table with
complete information about tensors of the first domain in a symmetry descent G ⇓ H or
G ⇓ F1 and about the relevant interactions (integrity basis, faint interactions, electric and
elastic switching interactions). In some cases, the information is shown on several pages as
described above.

The solution of the Inverse Landau problem follows from the table.

Twinning: This option is available in the pull-down menu View for the first group of
the set of conjugate subgroups and also directly at the frame in the case of a normal
subgroup. It displays a table which contains the following information: (i) the set of
consecutive normalizers of conjugate subgroups; (ii) left, right and double coset resolutions
with respect to the first group F1 of the set; and (iii) twinning group to each double coset.

Equitranslational subgroups of space groups: The pull-down menu Groups contains

two options: Point and Space. The second option leads to a complete description of the
lattices of equitranslational subgroups of space groups, the first option returns to the lat-
tice of point groups. In this description we use the fact that lattices of equitranslational
subgroups are isomorphic to lattices of their respective point groups.

On choosing the option Space, a new panel appears on the screen. In the right-
hand part of this panel is a box with all the Hermann–Mauguin symbols of space groups
which correspond to the original point group. If one picks up one of these symbols,
the specification of space-group type by its sequential number, by its oriented Schönflies
symbol and by setting and/or cell choice where applicable appears in the left-hand part of
the panel. At the same time, the symbols of the point groups in the lattice, whether they
are in Schönflies or in Hermann–Mauguin symbols, are replaced by Schönflies symbols of
the respective oriented space-group types.

This is not yet a complete specification of the subgroups, although it is already more
informative than the original lattices given by Ascher (1968). The parent group is, how-
ever, completely specified by the chosen Hermann–Mauguin symbol. To get the complete
specification of an individual subgroup, it is sufficient to click on the frame containing its
Schönflies symbol. The information which completely specifies the subgroup appears in
the lower bar of the panel, reserved for this information. This consists of the Hermann–
Mauguin symbol followed by an origin shift. In cases where the original conventional basis
does not coincide with the conventional basis of the subgroup, the lattice letter in the
Hermann–Mauguin symbol is embellished and its meaning is expressed on the same line.
The reader can consult the last section of this file to familiarize themselves with the logic
of this symbolism.
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Part A: Groups and their representations
Terminology and physical models: With the exception of the information about sub-
groups, where lattices of equitranslational subgroups of space groups are given in parallel
with the lattices of the point groups with which they are isomorphic, all information is
given in terms of the crystallographic point groups and tensor components. The point
groups are considered as groups acting on the three-dimensional orthogonal space V (3);
this action also defines the action of the point groups on tensorial and polynomial spaces.

Crystals and other materials are, however, objects in the three-dimensional Euclidean
space E(3). A detailed description of crystal symmetries and their changes in structural
phase transitions should therefore be based on space groups and relations between them.
Since the tensorial properties depend only on the point group of a crystal and their changes
are also associated only with the change of this point group, a description using the space
V (3) is permissible and can be connected with two physical models:

1. The model of infinitely small crystal: This is a model which corresponds to many
experimental arrangements. The crystal can be viewed as a point P in E(3) and its sym-
metry as the site point group GP . In this model we disregard the internal structure of
the crystal (or other material) as well as its finite size.

2. The continuum model of the crystal: In this model we consider the crystal as an
infinite homogeneous anisotropic medium which has the same properties at each of its
points. Again we disregard here the internal, discrete structure of the crystal and its
finite size. The symmetry of such a medium is a subgroup of the Euclidean group E(3)
which contains all translations and has the same site symmetry at each of its points. Such
group is a “space group” with a continuous translation subgroup for which we coin the
name point-like space group (Kopský, 1993a,b). There are 32 crystallographic space-group
types of such groups and we denote them by symbols V G in analogy with Hermann–
Mauguin symbols for the discrete space groups – V stands for the lattice which coincides
with the vector space V (3), G for the point group. Thus the symbol V m3m means the
space symmetry of any crystal of the geometric class m3m in the continuum model.

In this case we can again use the point groups when considering tensor properties,
taking into account that each point of the crystal has the same site point symmetry and
that the tensorial properties are the same at each point. The information about tensors
and their changes at structural phase transitions can again be given in terms of the point
groups and tensor components.

Both interpretations can be used as long as we are interested in only one domain state.
The second interpretation is necessary when considering domain walls or twin boundaries
where tensor properties are homogeneous in planes parallel with the boundary but exhibit
a spatial change on a path across the boundary.

Orthogonal operators and isometries: The point groups are subgroups of the full
orthogonal group O(3) which acts on the vector space V (3). The elements of this group
are orthogonal operators on V (3) and they are expressed by orthogonal matrices of the
matrix group O(3) in any orthonormal basis (ex, ey, ez) of V (3). The choice of a point
P in the corresponding Euclidean space E(3) and this orthonormal basis complete the
choice of a Cartesian coordinate system (P ; ex, ey, ez) in E(3). To each operator g ∈ O(3)
there corresponds an isometry {g|0}P of E(3) and all such isometries constitute a group
OP (3) – this is the group of all proper and improper rotations of the space E(3) which
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leave the point P invariant. To any subgroup G ⊆ O(3) there corresponds a subgroup
GP ⊆ OP (3) and vice versa. It is therefore admissible to use the usual language in which
orthogonal operators are called by the names of corresponding rotations and we shall
follow this custom including the name “group of rotations” for the group O(3).

Geometric classes: The set of groups that are conjugate subgroups of O(3) is called
the “geometric class” (of point groups). Groups of the same geometric class differ only in
their orientation in the space. Indeed, if the group F is expressed by certain matrices in
the basis (ex, ey, ez), then its conjugate group gFg−1 is expressed by the same matrices
in the basis (gex, gey, gez).

Remark 1: The concept of geometric class extends to Euclidean groups; a Euclidean
group is said to belong to a certain geometric class if its point group belongs to it. Thus
we have geometric classes of space groups, layer groups, rod groups and of the site point
groups.

Group elements: To present all the information we want, it is sufficient to consider only
the subgroups of specifically oriented groups of the geometric classes Oh and D6h. For the
group Oh, we choose the natural orientation where the fourfold axes are oriented along the
basis vectors (ex, ey, ez) of the Cartesian system. For the group D6h, we choose one of the
twofold axes along the vector ex and the hexagonal axis along the vector ez. Since there
is no possibility of misunderstanding, we shall use for these quite specific groups and for
some of their subgroups (see below) the same symbols as for the corresponding geometric
classes. Let us observe that the two groups in these orientations have in common exactly
the group D2h for which we again use the same symbol as for the whole geometric class.

The elements of these two groups are denoted by symbols which shall be further re-
ferred to as the Standard notation. The principle of this notation is quite commonly used
in the literature and it also coincides with the principle on which the recent proposal of a
nomenclature in higher dimensions (Janssen et al., 1999) is based. Rotations about axes
of angles π, 2π/3, π/2, π/3 in a counterclockwise direction are denoted by numbers 2, 3, 4
and 6 with subscripts indicating a positive direction of the axis according to the following
correspondence:

Orientations in the cubic group

x y z xy xy yz yz zx zx p q r s

[100] [010] [001] [110] [110] [011] [011] [101] [101] [111] [111] [111] [111]

Orientations in the hexagonal group

x x′ x′′ y y′ y′′ z

[100] [010] [110] [120] [210] [110] [001]

The use of subscripts is also specified in Fig. 1. Mirrors are denoted by a common
symbol m with a subscript of the twofold axis orthogonal to them. An overbar on the
numbers 3, 4 and 6 means the rotoinversion, i.e. the combination of the rotation with
space inversion; the subscript again denotes the positive direction of the axis. The cor-
relation of this notation with other selected notations used in the literature is given in
Appendix A where the relation between powers of the elements is also given. Note that
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Figure 1a. Symbols for the symmetry axes of the cubic group
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Figure 1b. Symbols for symmetry axes of the hexagonal group
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we use the symbol e for the unit element and i for the inversion (symbols 1 and 1 are not
acceptable in view of the clash with their meaning in Hermann–Mauguin symbols).

To facilitate correlation with spectroscopic literature we also use, up to a certain point
in this software, the Spectroscopic notation. The spectroscopic symbols for the elements
of the point groups are taken from the tables by Altmann & Herzig (1994) and Bradley
& Cracknell (1972). However, the spectroscopic notation is not internally compatible, so
symbols of the same operations differ in different specific groups and even the two books
do not have completely identical nomenclature. In addition, some of the symbols clash
with Schönflies symbols for the groups. The type of notation which we describe here as
the standard one is also used in the literature. From the comparative tables of notations
(Tables A1 and A2 of Appendix A) one can really see the need for us introduce our own,
internally compatible standard notation. Correlation between the two notations used here
is also given in the files Correlation Stnd./Spectro.

Standard orientations: Material properties which are homogeneous but not isotropic
and experimental measurements of such properties are conveniently referred to a certain
Cartesian basis. Once such properties are specified with reference to one Cartesian basis,
it is possible to express them with reference to any other basis using appropriate linear
transformations. The symmetry group of a material implies certain “selection rules” –
some linear combinations of tensor components are forbidden or, in other words, must
identically vanish. Analogously, the form of interactions between various parameters
(“faint interactions”) and of interactions between parameters and external fields (“switching
interactions”) is determined by the symmetry. The allowed form of a material tensor as well
as the expressions for tensorial and polynomial covariants (see below) depend, however,
not only on the symmetry of the material but also on the choice of the Cartesian system
and on the orientation of the symmetry group with reference to this system.

It is therefore necessary and sufficient to choose just one specifically oriented group
from each geometric class if we want to describe the allowed tensorial properties of a
material with the symmetry of any given geometric class, including the description of
symmetry descents and of relevant interactions. We introduce, however, three standard
orientations for the monoclinic geometric classes C2h, C2, Cs, three for the orthorhombic
geometric class C2v and two standard orientations for groups of geometric classes D2d,
D3, C3v, D3d, and D3h. There are two reasons for extending the choice:

(i) Standard orientations of space groups of these geometric classes correspond to
several standard orientations of their point groups.

(ii) In systematic tensor calculus, it is suitable to consider equally all groups of the
same oriented Laue class (see below the tables of tensorial covariants).

Remark 2: To each Euclidean group there corresponds a point group of a certain ori-
entation. Hence we can classify the space, layer, rod and site point groups into oriented
geometric classes.

Nonstandard orientations: When considering structural phase transitions, which con-
stitute the main application of our information scheme, we are interested in the change of
the parent symmetry to a low phase symmetry and in the change of tensorial properties
at the transition. The parent symmetry can be always chosen as a group in the standard
orientation. The symmetry of the low phase is always a subgroup of the parent symmetry.
We must therefore also take into consideration the subgroups of chosen specific groups.
Groups in nonstandard orientations appear as subgroups of groups in standard orienta-
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tions. The Schönflies and Hermann–Mauguin symbols of all specific groups which are used
in this program are given in Appendix B. The groups are divided into three rows which
correspond to subgroups of the groups Oh, D6h, and to their common subgroups which
are all subgroups of the group D2h = Oh ∩D6h. The orientation of groups is indicated by
directional subscripts which are omitted in cases when misunderstanding is not expected.

Isomorphisms: Two groups G and G̃ are said to be isomorphic if there exists a one-to-one
mapping (bijection) a : G −→ G̃ sending an element g ∈ G to an element g̃ = a(g) ∈ G̃,
called the image of g, and if this mapping sends the product of the elements into the
product of their images:

a(gh) = a(g)a(h) = g̃h̃.

From this it follows that the mapping also sends the unit element into a unit element and
a reciprocal element into the reciprocal element of its image:

a(e) = ẽ, a(g−1) = a(g)−1 = g̃−1.

The mapping a is called a group isomorphism.

Oriented Laue classes and isomorphisms: Among point groups we distinguish:

(i) Groups of proper rotations.
(ii) Noncentrosymmetric groups which contain improper rotations.
(iii) Centrosymmetric groups.

Groups which belong to the same geometric class are certainly isomorphic because
they are conjugate subgroups of the orthogonal group O(3). There exist 11 geometric
crystallographic classes of groups of proper rotations. In eight of these classes we choose
one group of proper rotations to be in a standard orientation and in the trigonal class D3

we choose two groups as follows:

1. Triclinic system: C1 − 1.
2. Monoclinic system: C2z − 2z.
3. Orthorhombic system: D2 − 2x2y2z.
4. Tetragonal system: C4z − 4z and D4z − 4z2x2xy.
5. Trigonal system: C3 − 3z and two groups: D3x − 3z2x, D3y − 3z2y.
6. Hexagonal system: C6 − 6z and D6 − 6z2x2y.
7. Cubic system: T − 23 and O − 432.

Each group G of proper rotations generates groups of an “oriented Laue class”. We
say that the group belongs to an oriented Laue class if it contains all proper rotations
of the group G either by themselves or in combination with the space inversion i. Apart
from the group of proper rotations G itself, the oriented Laue class always also contains
the centrosymmetric group Gh = G ⊗ I, where I ≈ Ci = {e, i} is the inversion group.
It is a crystallographic tradition to denote a “Laue class” of space groups by the symbol
of the centrosymmetric geometric class; accordingly we denote the oriented Laue class
(of point groups) by the symbol of the respective centrosymmetric point group Gh. By
Laue class of point groups we then understand the collection of all oriented Laue classes
characterized by centrosymmetric groups of geometric class Gh.

Remark 3. In theoretical relations we write I for the space inversion group instead of
Ci. We also write Gh for the centrosymmetric group to a group G of proper rotations,
although Gh = C3i and D3d for G = C3 and D3.
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The noncentrosymmetric groups which contain improper rotations exist if and only if
the group of proper rotations has halving subgroups H ; actually each halving subgroup
defines exactly one such group in the following manner:

The group G can be expressed as G = H ∪gH . Replacing elements of the coset gH by
their combinations with the space inversion, we obtain the group H∪igH . The inversion i
commutes with every proper rotation, so the group H ∪ igH is isomorphic with the group
of proper rotations G. We choose the isomorphisms in the most natural way: Elements
h ∈ H are mapped onto themselves, elements igh ∈ igH are mapped onto gh ∈ G. The
isomorphisms used in this software are given in Appendix C.

As follows from the preceding reasoning, each Laue class of classical point groups
contains groups of two isomorphic types: those isomorphic to the group of proper rotations
and the centrosymmetric groups; there is just one centrosymmetric group in each oriented
Laue class. Apart from these isomorphisms there exist isomorphisms across Laue classes:
The group Ci is isomorphic to C2z and the group C2hz is isomorphic to the group D2.
These isomorphisms are of no importance in our scheme.

Remark 4. Again we can distinguish oriented Laue classes and Laue classes of space,
layer, rod and site point groups.

Order of the group: The simplest characteristic of a finite group G is the number of
its elements. This number is called the order of the group and usually denoted by |G|.
Despite its simplicity, the order of the group appears in important relations.

Classes of conjugate elements: We say that two elements g, g′ ∈ G are conjugate
elements in G if an element f ∈ G exists such that g′ = fgf−1. Conjugation is an
operation which subdivides all elements of a group into classes because it has the three
properties required for a class:

1. Symmetry: Each element is conjugate with itself: g ∼ g.
2. Reflexivity: If f is conjugate with g, then g is conjugate with f and vice versa:

g ∼ f ⇔ f ∼ g.
3. Transitivity: If f is conjugate with g and h is conjugate with f then h is conjugate

with g or: f ∼ g and h ∼ f ⇒ h ∼ g.

If the group is Abelian, requesting the class structure results in the statement: Abelian
group: Each element constitutes its own class being displayed on the screen. In other
cases, the table describing the class structure of all groups belonging to the same oriented
Laue class is displayed. Noncentrosymmetric groups have the same class structure as the
group of proper rotations which is listed first. Classes are denoted by letters Ki and the
subscript 1 is reserved for the class which contains the identity so that it is always the
case that K1 = {e}. The elements of other classes correspond to the elements of classes in
the group of proper rotations and contain the same proper rotations or their combination
with the inversion i.

The inversion i commutes with all other point-group elements. Hence the number
of classes of the respective centrosymmetric group is twice the number of classes of the
group of proper rotations and a class contains either only proper rotations or only im-
proper rotations. We denote by K+

i the class of those elements which are contained in
the class Ki of the proper rotation group, by K−

i the class of the same elements combined
with the inversion i. It is therefore always the case that K+

1 = {e} and K−
1 = {i}. It is

possible to switch between tables of class structures in terms of standard or spectroscopic
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notation of the elements and the correlation between the symbols of classes is again given
in Correlation Stnd./Spectro. files.

Class multiplication: We denote by lower-case ki the number of elements in the conju-
gacy class Ki. If we take all products gigj of group elements where gi ∈ Ki and gj ∈ Kj,
we obtain a set of elements, the number of which is the product kikj of the numbers of
elements in the two classes. An element may occur in this product set several times, in
which case all elements of the class to which it belongs appear in the set the same number
of times. This is expressed by the class multiplication formula:

KiKj =
|K|∑
l

cij,lKl,

where the coefficients cij,l, called the class multiplication coefficients, express the number
of times every element of a class Kl occurs in the set KiKj. These numbers are related
to the order of the group by the evident relation

|G|2 =
|K|∑

i,j=1

kikj =
|K|∑
i,j,l

cij,lkl.

Class multiplication is given in the form of tables analogous to the multiplication table
of the group and coincide with it in the case of Abelian groups. If the group is Abelian,
requesting class multiplication results in the statement: Abelian group: Class multiplication
table is identical with the multiplication table of elements. In the case of noncentrosymmet-
ric groups, the class multiplication table is displayed with the title Isomorphism type G,
with Schönflies and Hermann–Mauguin symbols for the group of proper rotations G. In
the case of a centrosymmetric group, the table is displayed with the title Centrosymmetric
group Gh, with Schönflies and Hermann–Mauguin symbols for Gh.

Subgroups
This section reviews the basic facts about subgroups needed in the theory of repre-

sentations. A more advanced consideration of lattices of subgroups and their connection
with representation spaces is given at the start of Part B.

Subgroups: A set H of elements h of G is called a subgroup of G if it is itself a group
under the same multiplication law. Each group G contains at least two subgroups:

(i) The group G itself.
(ii) The group C1 consisting only of the unit element e.
These subgroups are usually called the trivial subgroups. The cyclic groups of prime

order contain only these two subgroups.

Cosets and coset resolution: Let F = {e, f2, . . . , fp} be a subgroup of G, consisting of
p = |F | elements fi. We shall always list the unit element first, because it is contained in
any subgroup; the unit element therefore always corresponds to the suppressed subscript 1;
i.e. f1 = e. Let us now choose an element g of G and construct two sets by multiplication
of the elements of F by g either from the left or from the right: gF = {g, gf2, . . . , gfp}
and Fg = {g, f2g, . . . , fpg}. If g ∈ F then gF = Fg = F . The elements in each such set
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are distinct and their number is therefore p = |F | = the order of the group F . The set
gF is called a left coset of F in G, the set Fg is called a right coset of F in G.

We now compare two left cosets giF and gjF to show that they are either disjoint

or identical. If gif = gj f̃ , where f, f̃ ∈ F is an element which the two cosets have in

common, then gi = gj f̃ f−1 belongs to gjF because f̃f−1 = fk is an element of F . Hence
every element gifm, m = 1, 2, . . . , p is also an element gjfkfm of gjF because fkfm is
certainly in F . On the other hand, each element gjfm of gjF is an element gif

−1
k fm of

giF because gj = gif
−1
k = gif f̃−1 and f−1

k fm is certainly an element of F . Analogously,
we can prove that right cosets Fgi and Fgj are either disjoint or identical.

Corollary: (i) It is possible to express the group G as a union of left cosets of its
subgroup F :

G = F ∪ g2F ∪ . . . ∪ gqF.

This expression is called the left coset resolution of G with respect to its subgroup F or
the decomposition of the group G into the left cosets of its subgroup F .

(ii) It is possible to express the group G as a union of right cosets of its subgroup F :

G = F ∪ Fg′
2 ∪ . . . ∪ Fg′

q.

This expression is called the right coset resolution of G with respect to its subgroup F or
the decomposition of the group G into the right cosets of its subgroup F .

(iii) Lagrange theorem: The number q of left cosets of a subgroup is equal to the number
of right cosets and it is a divisor of the order of the group G.

This number is denoted by q = [G : F ] and is called the index of the subgroup F in the
group G. Since p = |F | is also the number of elements in each coset, the product pq = |G|
equals the order of the group G.

The elements gi or g′
j in a particular left or right coset resolution are called the coset

representatives. Any element of either the left or right coset can be chosen as its repre-
sentative. If a sequence of elements {e, f2, . . . , fp} in the subgroup F is chosen, then the
change of the choice of a representative of a coset changes the sequence of the elements
in the coset.

It is important to realize that the representatives of left cosets are generally different
from the representatives of right cosets. However, it is always possible to choose the right
coset representatives as the inverses g′

i = g−1
i of the left coset representatives. The set of

elements inverse to elements of a left coset giF is identical with a right coset Fg−1
i and

vice versa: the set of elements inverse to elements of a right coset Fgj is identical with
the left coset g−1

j F .

Double cosets: The set of all distinct elements of the form figfj, where fi, fj ∈ F and g
is an element of G, is called the double coset of F in G and denoted by FgF . The element
g, called the double coset representative, belongs to FgF and the double coset does not
change if g is replaced by another of its elements, so any element may be chosen as a
representative.

The set of elements (FgF )−1 = Fg−1F contains all elements inverse to the elements
of a double coset FgF . It is itself a double coset with representative g−1 and it is called
the inverse double coset to FgF .

A double coset FgF is called ambivalent if it is identical with its own inverse. This
means that the coset contains with each element also its inverse. It is, however, suffi-
cient that the double coset contains an inverse to one of its elements in order that it be
ambivalent.
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If a double coset does not contain an inverse to one of its elements, then it cannot
contain an inverse to any of its elements. The intersection of the double coset with its
inverse is then empty:

FgF ∩ (FgF )−1 = ∅
and the double coset is called polar. Polar double cosets exist in pairs FgF and Fg−1F
which are called complementary double cosets.

A double coset FgF consists of whole left cosets as well as of whole right cosets.
Indeed, if we take fi = e, we get gF ⊆ FgF , while if we take fj = e, we get Fg ⊆ FgF .

If a left coset gF is identical with the right coset Fg, then it also coincides with the
double coset FgF . Such cosets will be distinguished as simple double cosets while double
cosets consisting of several left cosets and hence of the same number of right cosets will
be called multiple double cosets.

If elements of the subgroup F are arranged in a certain sequence F = {e, f2, . . . , fp},
then the choice of a representative element g determines the sequences of elements gF =
{g, gf2, . . . , gfp}, Fg = {g, f2g, . . . , fpg} in the left as well as in the right coset. These
sequences are not necessarily identical even if gF = Fg. However, the choice of the rep-
resentative g does not determine the sequence of elements in the multiple double coset
FgF . The number of products of the form figfj is p2, but not all of them are distinct.

Conjugate subgroups: Again we consider a subgroup F of G. We choose an element
g ∈ G and construct the set of elements gFg−1 = {e, gf2g

−1, . . . , gfpg
−1}. This set is

also a subgroup of the group G, isomorphic to the group F . Indeed, we define a mapping
ϕg : F −→ gFg−1 : fi −→ ϕg(fi) = gfig

−1. This mapping is an isomorphism, because

ϕg(fifj) = gfifjg
−1 = gfig

−1.gfjg
−1 = ϕg(fi)ϕg(fj).

The group gFg−1 is called a conjugate subgroup to the subgroup F .

Normal subgroups: If a subgroup H of the group G has the property that gHg−1 = H
for any element g ∈ G, then the subgroup H is called a normal subgroup of G (an older
logical name is the self-conjugate subgroup).

A normal subgroup H of the group G has the property that the left and right coset
resolutions of G with respect to its subgroup H are identical. In other words, each left
coset gH contains the same elements as the right coset Hg. Indeed, for an element
gh ∈ gH we find an element ghg−1 = h̃ ∈ H and it is gh = h̃g. In the case of cosets of a
normal subgroup we do not need to distinguish the left and right cosets; we still have to
distinguish the left and right representatives; while the cosets giH and Hgi contain the
same elements of G, they generally appear in a different order.

Cosets of a normal subgroup have another important property: If we take an arbitrary
element gih1 ∈ giH and an arbitrary element gjh2 ∈ gjH , then the product gih1gjh2

always belongs to the same coset gkH , where gk can be chosen as gk = gigj. In-
deed, if gi, gj and hence also gk are fixed, then an arbitrary choice of the two elements

means that h1, h2 ∈ H are arbitrary. However, h1gj = gjh̃1 where h̃1 ∈ H and hence

gih1gjh2 = gigjh̃1h2 = gkh̃1h2. Since h̃1h2 ∈ H , we have proved that the product of any
elements from two cosets giH and gjH always lies in the coset gkH , where gigj is one of
the possible representatives gk.

Factor groups: From the preceding, it follows that the set of cosets γi = giH = Hgi can
be itself considered as a group with the multiplication law defined as follows: γiγj = γk if
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gigj = gk where gi ∈ γi, gj ∈ γj, gk ∈ γk. The group of cosets with this multiplication law
is called the factor group of the group G with respect to its normal subgroup H and is
denoted by G/H . The subgroup H plays the role of the unit element ε = H in the factor
group.

Normalizers: Again, let G be a group and F a subgroup of G. The set of all elements
g ∈ G, for which gFg−1 = F , constitutes a subgroup of G, called the first normalizer of F

in G and denoted by N
(1)
G (F ). This normalizer is the largest subgroup of G in which F

is normal. Hence all double cosets of F in the decomposition of N
(1)
G (F ) are the simple

double cosets. Vice versa, the collection of all simple double cosets of F in the coset

resolution of G constitutes the first normalizer N
(1)
G (F ).

If N
(1)
G (F ) = G, then the subgroup F is normal in G. If N

(1)
G (F ) = F , the subgroup

F is called a self-normalizer (in G). If F ⊂ N
(1)
G (F ) ⊂ G, so that F is neither normal

nor a self-normalizer, then we consider the normalizer of the group N
(1)
G (F ) in G. The

resulting group is denoted by N
(2)
G (F ) and is called the second normalizer of F in G. It is

again either N
(2)
G (F ) = G, so that N

(1)
G (F ) is normal in G, or N

(2)
G (F ) = N

(1)
G (F ), so that

the first normalizer N
(1)
G (F ) is a self normalizer, or F ⊂ N

(1)
G (F ) ⊂ N

(2)
G (F ) ⊂ G. In the

latter case we consider again the next normalizer.

Continuing the procedure, we get a set of consecutive normalizers, which are important
in considering the fine structure of domain states (Kopský, 1982, 1983). If the subgroup
is of finite index, the chain of consecutive normalizers is finite. The following statements
hold for finite groups:

1. A maximal subgroup of the group G is always normal or it is a self-normalizer.
2. The set of consecutive normalizers terminates either with the group G itself or with

a self-normalizer.

In the case of subgroups of the crystallographic point groups only the following cases
occur:

(i) F = H is a normal subgroup.

(ii) N
(1)
G (F ) = H is a normal subgroup of G. The group F = F1 belongs to the set of

conjugate subgroups Fi of which H is a common normalizer.
(iii) F = F1 is a self-normalizer. The groups Fi then constitute a set of conjugate

self-normalizers.
(iv) The first normalizer N

(1)
G (F ) is a self-normalizer.

(v) The second normalizer N
(2)
G (F ) is a self-normalizer.

Homomorphism: A mapping a : G −→ G of a group G into a group G which sends
the element g ∈ G to an element g̃ = a(g) ∈ G, called the image of g, is called a group
homomorphism if this mapping sends the product of elements into the product of their
images:

a(gh) = a(g)a(h) = g̃h̃.

An isomorphism is therefore a particular case of a homomorphism; a homomorphism is
an isomorphism if it is a one-to-one mapping. Note also that a homomorphism is defined
as a mapping into a group G.
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Kernels and images: Those elements of the group G that are mapped by the homo-
morphism a onto the unit element ẽ of G form a subgroup H of the group G called the
kernel of the homomorphism a, written as H = Ker a. This subgroup is normal in G and
elements of each coset giH are mapped by the homomorphism a onto the same element
γ̃i = a(giH). The set of these elements forms a group H = {ẽ, γ̃2, . . . , γ̃q} called the image
of the homomorphism a and denoted by H = Im a. This group is isomorphic to the factor
group G/H .

Note that we distinguished the elements of the image and of the factor group only by
a tilde to emphasize the isomorphism of G/H and H. Technically, the factor group G/H
is the group of cosets of a normal subgroup while the image of a homomorphism may
have different meanings. It is also important to see that every homomorphism defines a
normal subgroup – its kernel – and hence a factor group. On the other hand, each normal
subgroup defines a certain homomorphism – the natural homomorphism onto the factor
group. Any other homomorphism is obtained as an isomorphism of a specific group with
this factor group.

Representations
Introduction. Quite generally, the term representation is used for various homomor-

phisms of the group G into some general groups of specific mathematical objects. The
most useful, in physical applications, are representations of groups by linear operators
where elements of the group act on linear spaces (or modules) and by permutations where
elements of the group act on a (finite) set. The choice of the basis of the linear space or
the choice of numerical labels of the elements of the set then leads to representations of
the group by matrices.

Representations by linear operators: There exist many types of linear spaces (or modules)
and, accordingly, many types of representations. If V is such a space and GV the general
group of linear operators acting on this space, then a representation of the group G by
operators on V is a homomorphism U : G −→ GV which maps each element g ∈ G onto
an operator U(g) ∈ GV . This homomorphism has a certain kernel H = Ker U which is
defined as the group of all those elements of G for which U(g) = I – the unit element of GV .
It has also a certain image H = Im U which consists of operators Ui = U(giH) = U(Hgi).
The kernel is a normal subgroup of G and the image is isomorphic to the factor group
G/H ; a representation assigns the same operator to all elements of the coset giH = Hgi.

Matrix representations: These are defined as homomorphisms of the group G into certain
groups of matrices. Though independent consideration of matrix groups is possible, the
actual gist of applications of representation theory lies in the connection of operator with
matrix representations. Indeed, if we choose a basis of the space V , then each operator
of GV is defined by its matrix and all these matrices form a certain matrix group GV .
Specification of a basis of V defines an isomorphism Σ : GV −→ GV . The operator
representation U of the group G then defines its matrix representation D(V ) : G −→ GV
which assigns to each element g ∈ G that matrix D(V )(g) which the isomorphism Σ assigns
to the operator U(g). The matrix representation is therefore the result of consecutive
application of the homomorphism U followed by isomorphism Σ and this isomorphism
depends on the choice of the basis of V .

This approach, suitable for a general study of representation theory, is used in some
textbooks, for example, in the textbook by Lyubarskii (1960). It can be simplified by the
introduction of the concept of group action.
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The group action: We say that the group G acts on a set S if to each element g ∈ G
and to each element s ∈ S there is assigned an element gs ∈ S. This is the most
general formulation, which applies to representations by linear operators as well as by
permutations. We simply bypass the symbol U(g) for an operator which represents the
element g ∈ G, using the symbol g itself for the operator on the space V .

A representation of a group is called faithful if it is an isomorphism. From this view-
point, each point group is its own faithful representation by operators of O(3) which act
on the ordinary vector space V (3); this is the so-called vector representation. This repre-
sentation defines the action of the point group on spaces of tensors and of polynomials,
which are our main concern. The dimension of tensorial and polynomial spaces grows
quickly with the order and as a result it would be complicated to describe the transforma-
tion properties of tensors and of polynomials. The theory of irreducible representations
facilitates the description of these properties. We shall describe below a method of “typical
carrier spaces”, and “typical bases, variables and covariants”, developed more than twenty
years ago (Kopský, 1975, 1976a) and tailored specifically for the consideration of tensorial
properties and their changes at structural phase transitions, and for the construction of
thermodynamic potential. All representations which we need in this program are real
orthogonal representations. However, the most important theorem of the representation
theory, known as Schur’s lemma, is valid only in the field of complex numbers. The
deviations from its consequences, which appear with reference to some irreducible repre-
sentations of crystallographic point groups, have a simple standard character explained
below (cf. Standard transformations).

The vector representation: The point groups are defined as groups of real orthogonal
operators g ∈ O(3) acting on the three-dimensional vector space V (3) = V (ex, ey, ez).
We can say that each point group is its own faithful representation, which is called the
“vector representation”. Corresponding matrices of vector representations in the Cartesian
(orthonormal) basis {ex, ey, ez} will be denoted by D(V )(g). For the purposes of tensor
calculus and formulae with summations we also use alternative labelling of vectors and
their components by numbers as follows:

x = xex + yey + zez =
3∑

i=1

xiei,

where

x = x1, y = x2, z = x3 ex = e1, ey = e2, ez = e3.

The action of the point group G ⊆ O(3) on the space V (3) is defined by:

gei =
3∑

j=1

D
(V )
ji (g)ej.

If x ∈ V (3), then the operator g ∈ O(3) sends it to a vector gx =
∑3

i=1 xigei =∑3
i=1

∑3
j=1 D

(V )
ji (g)xiej =

∑3
i=1 x′

jej , so that the coordinates of the new vector in the
old basis are

x′
i = (gx)i =

3∑
j=1

D
(V )
ij (g)xj.

This corresponds to the convention by which operators are expressed by square matrices,
vectors by column matrices and the action of an operator g on vector x resulting in vector
x′ with coordinates x′

i = (gx)i is expressed in matrix form by
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
D

(V )
11 (g) D

(V )
12 (g) D

(V )
13 (g)

D
(V )
21 (g) D

(V )
22 (g) D

(V )
23 (g)

D
(V )
31 (g) D

(V )
32 (g) D

(V )
33 (g)


 x

y
z

 =

 x′

y′

z′

 .

The action of the point group G ⊆ O(3) on the space V (3) also defines the action of
this group on spaces of tensors and their components, on polynomials or, more generally,
functions of a vector x ∈ V (3) or even on polynomials or functions of tensors expressed
in their components.

Tensor representations: The vector representation defines tensor representations as
follows: We introduce a space V n(3), the basis vectors of which are formally written as:

ei1,i2,...in = ei1ei2 . . . ein .

A general element of this space is therefore

u =
∑

i1,i2,...,in

ui1,i2,...inei1,i2,...in.

Such an element is called the tensor of rank n and the space V n(3) is called the tensor
space. The action of the group G and actually also of the whole orthogonal group O(3)
on this space is defined by the action of its elements on the basis according to

gei1,i2,...in = D
(u)
j1j2...jn,i1i2...in(g)ej1,j2,...jn = D

(V )
j1i1(g)D

(V )
j2i2(g) . . .D

(V )
jnin(g)ej1,j2,...jn,

so that the matrices of tensor representation are expressed through matrices of vector
representation as follows:

D
(u)
j1j2...jn,i1i2...in(g) = D

(V )
j1i1(g)D

(V )
j2i2(g) . . .D

(V )
jnin(g).

Apart from this, we can define an operation of the symmetric group Sn on this space as
the group of permutations of indices i1, i2, . . . , in. On this basis we can construct tensors
of various symmetries with reference to permutation of indices – the so-called intrinsic
symmetries. According to a general theorem, tensors of a defined intrinsic symmetry
constitute a space which is invariant under the action of the group O(3) and hence under
the point groups G ⊆ O(3). We define below some tensor spaces of lower orders with
symmetrized indices which are used in physics.

The tensor space is just another linear (orthogonalized) space on which the group O(3)
and its subgroups act. Let us denote a tensor of a certain intrinsic symmetry by A, the

space of such tensors by V (A) and its basis by {e(A)
i }i∈I(A), where i runs through a certain

set of indices I(A). Each index set I(A) is therefore part of the definition of the basis of
the tensor space V (A) with reference to which we express the tensor components. There
exist standard choices of index sets for tensors of material physics which relate the tensor
to a Cartesian coordinate system (P ; ex, ey, ez) of the Euclidean space E(3) and hence to
an orthonormal (Cartesian) basis (ex, ey, ez) of vector space V (3); corresponding bases

{e(A)
i }i∈I(A) will be referred to as Cartesian bases of tensor spaces V (A). The general tensor

of the space V (A) is expressed as

A =
∑

i∈I(A)

Aie
(A)
i ,
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where Ai are the Cartesian tensor components. The action of the group O(3) and of its
subgroups G on the space V (A) is given by

gA =
∑

i∈I(A)

Aige
(A)
i =

∑
i,j∈I(A)

AiD
(A)
ji (g)e

(A)
j ,

so that the transformation properties of tensor components are given by

(gA)i =
∑

i∈I(A)

D
(A)
ij (g)Aj,

where D
(A)
ij (g) are the matrices of tensor representation in the basis {e(A)

i }i∈I(A). The
calculation of these matrices is in fact exactly the procedure we want to avoid.

Why? Well, they are n × n matrices, where n is the dimension of V (A) and the
dimensions are unpleasantly high; for example n = 6 for the permittivity or deformation
tensor, n = 18 for the piezoelectric tensor and n = 21 for the elastic stiffness tensor.

How? The answer is given by the theory of irreducible representations, which shows
how to find the bases in which the action of the group is expressed in the simplest manner.

Polynomial and functional representations: In the previous section we defined tensor
spaces related to the ordinary vector space V (3); this corresponds to tensors of material
physics which are our main concern. To find the invariant form of various interactions
under the action of point groups, it is useful to develop methods for the determination of
transformation properties of polynomials and ultimately of functions of tensors. Here we
begin with a tensor space V (u)(n), where n now means its dimension. We denote the basis
vectors by {e1, e2, . . . , en}; this can be achieved by relabelling the symmetrized indices
i1, i2, . . . , in, in other words by defining the index set I(u) as the mapping of numbers
from 1 to n onto the set of symmetrized indices. The general tensor of the space V (u)(n)
is then expressed as u =

∑n
i=1 uiei. The action of the elements of G ⊆ O(3) on this basis

and transformation of tensor components are expressed in the standard manner:

gei =
n∑

j=1

D
(u)
ji (g)ej, (gu)i =

n∑
j=1

D
(u)
ij (g)uj.

Although these relations have formally the same form as the action of the elements g ∈
O(3) on the basis or on vectors of V (3), there is a principal difference: Each transformation
of the orthonormal basis of V (3) can be interpreted as a result of an action of a certain
orthogonal operator g ∈ O(3). Each operation g on the tensor space may be interpreted
as a transformation of this space while not every transformation can be interpreted as an
operator g on the tensor space V (u)(n).

If f(u) is a function of the tensor u, we define the transformed function gf(u) = fg(u)
as that function which has the same values for a transformed tensor gu as the original
function has for the tensor u. From this we get the relation fg(gu) = f(u) or, finally,
fg(u) = f(g−1u).

Let us now assume that the functions we have in mind are the components of the
tensor, so that fi(u) = ui. Then the transformed functions are fgi(u) = fi(g

−1u).
But it is g−1u =

∑n
i,j=1 Dij(g

−1)ujei of which the ith component is
∑n

j=1 Dt
ji(g

−1)uj =∑n
j=1 D̃ji(g)uj, where D̃ji(g) = [Dt

ji]
−1(g) = [D−1

ji ]t(g) denotes the matrix which is recip-
rocal and transposed to the original matrix Dij(g) – the so-called adjoint matrix.

We come therefore to a conclusion that the tensor coordinates, considered as functions
of the tensor (they are the linear functions of a tensor), transform by matrices of an adjoint
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representation to that by which the basis vectors of the tensor space transform. If the
original matrices are real orthogonal, then Dt(g) = D−1(g) and hence D̃(g) = D(g); from
the fact that the inverse matrix to an orthogonal is equal to its transpose, it follows that
the adjoint matrix to an orthogonal is identical with it. In general physical applications
the unitary representations are used for which the inverse matrix is equal to its complex
conjugate. We shall use below complex variables only for the purposes of completeness,
because a skilled reader can also use our results for quantum-mechanical problems. For
our main purposes we can state that the transformation properties of tensor coordinates
and of tensor bases are identical.

Linear functions of a tensor u are a particular case of polynomials in components
of u. The space of all polynomials in components of u splits into subspaces Pk(u) of
homogeneous polynomials of the same order k in these components and each of these
subspaces is invariant under the action of point groups G ⊆ O(3). Finally, the linear
envelope P(u) = ⊕kPk(u) of all these spaces contains various spaces F(u) of functions;
of interest is the space of smooth functions of tensor u, i.e. those functions which have
all derivatives. The use of the extended integrity bases, described below, enables us to
classify even such functions as these by their transformation properties. However, in
practice we use, as a rule, only the polynomial expansion.

Explicit work with tensor and polynomial representations in their general form is very
complicated because the dimension of the matrices involved grows quickly with rank or
order. The matrices inform us about the transformation properties of tensor components
and of their functions. The theory of irreducible representations facilitates procedures
with such components and functions. It shows how to choose more suitable bases in
which the matrices have the simplest possible form. In addition, the classification of
bases by irreducible representations selects physical states belonging to the same energies.

Irreducible representations
Reducibility/Irreducibility/Decomposability: Now we consider the action of a group
G on a general linear space V (n) which may be one of the tensor or polynomial spaces. We
say that the space V (n) is reducible under the action of the group G if the space contains
a proper G-invariant subspace V (m1), otherwise we say that the space is irreducible. We
say that the space V (n) is decomposable under the action of the group G if it splits into a
direct sum V (n) = V (m1) ⊕ V (m2) of G-invariant subspaces V (m1) and V (m2), so that
each vector x ∈ V (n) is uniquely expressible as a sum x = x1 +x2 of vectors x1 ∈ V (m1),
x2 ∈ V (m2) and each element g ∈ G sends a vector x1 ∈ V (m1) to a vector gx1 ∈ V (m1)
and a vector x2 ∈ V (m2) to a vector gx2 ∈ V (m2). If we now choose a basis of the space

V (n) in such a manner that m1 of its vectors {e(1)
1 , . . . , e(1)

m1
} constitute a basis of V (m1),

m2 of its vectors {e(2)
1 , . . . , e(2)

m2
} constitute a basis of V (m2), then the matrix form of the

action of all elements g ∈ G will be quasidiagonal:

D(V )(g) =

(
D(V1)(g) 0

0 D(V2)(g)

)

Decomposability is a stronger property than reducibility. However, if the groups are
finite, as all crystallographic groups are, and if the subject on which the group acts is
a linear space, then reducibility implies decomposability. This is why in textbooks we
usually only find the concept of reducibility, which is handled as if it is decomposability.
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The spaces V (m1), V (m2) can be themselves again reducible and we can continue the
procedure of reducing them further. Eventually we arrive at a direct sum ⊕k

i=1V (mi)
of k G-invariant irreducible subspaces V1 = V (m1), V2 = V (m2),. . ., Vk = V (mk) of

dimensions mi, i = 1, 2, . . . , k with bases {e(1)
1 , . . . , e(1)

m1
}, {e(2)

1 , . . . , e(2)
m2

}, {e(k)
1 , . . . , e(k)

mk
}

in which the matrices of all elements g ∈ G will have the quasidiagonal form:

D(V )(g) =


D(V1)(g) 0 0

0 D(V2)(g) 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 D(Vk)(g)

 . (1)

Classes of representations and characters: If a group G acts on the space V (n),
then the matrices D(V )(g) which represent the action of individual elements g ∈ G depend
on the choice of the basis {e1, . . . , en}. A transformation e′

i =
∑n

j Sjiej to another basis

{e′
1, . . . , e

′
n} leads to new matrices D(V )′(g) = S−1D(V )(g)S. Two matrix representations

related by this similarity transformation are called “equivalent”. Matrix representations
of a group G constitute therefore “classes of equivalent representations”. To each class of
equivalent representations we assign a function on the group G by χ(g) = Tr D(V )(g),
where Tr means the trace of the matrix, i.e. the sum of its diagonal elements (another
symbol in use is Sp from German word Spur). This function is called the “character” of
the representation D(V )(g) and has the following properties:

1. It does not depend on the choice of the basis of V (n) and hence on the particular
matrix form of the representation because Tr D(g) = Tr S−1D(g)S.

2. Characters are functions of conjugacy classes, i.e. the elements of the same class
Ki have the same character because Tr D(fgf−1) = Tr D(f)D(g)D(f)−1 = Tr D(g).

3. The character of the unit element e equals the dimension of the representation:
χ(e) = dim V (n) = n. Indeed, the matrix D(e) contains n times number 1 on the
diagonal, so that Tr D(e) = n.

4. If the representation is reducible, then the trace of each matrix D(V )(g) is the
sum of traces of the matrices which appear as blocks in the quasidiagonal form, so that
χ(g) =

∑k
i=1 χi(g), where χi(g) = Tr D(Vi).

Characters of irreducible representations: If the group G is finite, then the num-
ber of equivalence classes of irreducible representations (ireps) is finite and equals the
number of conjugacy classes in G, i.e. the number we denoted by |K|. This means that
the number of different character functions for irreducible representations is also finite.
We give them certain numerical labels α = 1, 2, . . . , |K| and denote them by χα(g). The
label 1 is always reserved for the character χ1(g) = 1 of the identity irep. Irreducible
characters have certain marvellous properties:

1. They are mutually orthogonal with respect to averaging over the group G, which
means that

1

|G|
∑
g∈G

χα(g)χ∗
β(g) = δαβ , (2)

where δαβ is the Kronecker delta, which equals 1 if α = β, 0 if α �= β and the asterisk
denotes complex conjugate.
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2. Any representation of G with a character χ(g) is a direct sum of irreducible repre-
sentations. The character χ(g) is the sum

χ(g) =
|K|∑
α=1

nαχα(g), (3)

in which nα is the “multiplicity” (or frequency) with which an irep of the class χα appears
in the representation of the class χ(g). Using formula (2) we find that the multiplicity
equals

nα =
1

|G|
∑
g∈G

χ(g)χ∗
α(g). (4)

3. Hence the irreducible subspaces V (mi) can be classified by ireps of the group G.
We give them accordingly labels α which specify the class of irep by which the subspace
transforms and labels a = 1, 2, . . . , nα which label individual subspaces belonging to the
same class of ireps. The whole space is then a direct sum

V (n) =
|K|⊕
α=1

nα⊕
a=1

Vα,a(dα) =
|K|⊕
α=1

Vα(nαdα), (5)

where

Vα(nαdα) =
nα⊕
a=1

Vα,a(dα)

is the linear envelope of all spaces which transform by the irep of the class χα. The
subspaces Vα(nαdα) are mutually orthogonal, while the subspaces Vαa(dα) can be chosen
as orthogonal subspaces but also as non-orthogonal subspaces. The numbers dα = χα(e)
are the dimensions of irreducible subspaces Vαa(dα).

The fundamental theorem on representations

To each class χα(G) of ireps of a specific group G we can choose one certain matrix
irep D(α) : g −→ D(α)(g). Let us consider any space V (n) on which the group G acts as
a group of linear operators. If this space splits into G-irreducible subspaces according to
relation (5), it is possible to choose the bases {eαa,1, . . . , eαa,dα} of subspaces Vαa in such a
manner that their vectors transform simultaneously by the same matrix irep D(α), so that

geαa,i =
dα∑
j=1

D
(α)
ji (g)eαa,j . (A)

If there is only one space Vα(dα) which transforms by an irep of the class χα, then the
space is uniquely defined and the choice of the basis {eα,1, . . . , eα,dα} which transforms
by matrices of D(α) is unique up to a common factor. In other words, all bases which
transform by this irep have the form b{eα,1, . . . , eα,dα} = {beα,1, . . . , beα,dα}, where b is a
constant factor; if bases are to be unitary orthonormal, it must be |b| = 1, i.e. b = eiϕ;
to keep the basis real orthogonal, we have only the choice b = ±1. If the number of inde-
pendent subspaces Vαa(dα) is a = 1, 2, . . . , nα > 1 and their bases are {eαa,1, . . . , eαa,dα},
then there exist alternative choices of subspaces Vαb(dα), b = 1, 2, . . . , nα with bases
{eαb,1, . . . , eαb,dα}, related to bases of subspaces Vαa(dα) by

eαb,j =
nα∑
a=1

Babeαa,j . (i)
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The counterpart of equations (A) and (i) for components xαa,i of a vector x ∈ V (n) in
the basis {eαa,1, . . . , eαa,dα} reads:

(gx)αa,i =
dα∑
j=1

D
(α)
ij (g)xαa,j . (B)

xαb,j =
nα∑
a=1

Cbaxαa,j , (ii)

where CB = BC = I or C−1 = B, B−1 = C. The matrices B and C have to be unitary
or orthogonal if we want to keep the bases normalized.

Equations (A), (B) and transformations (i), (ii) constitute the basic relations of the
theory of irreducible representations. The bases {eαa,1, . . . , eαa,dα} are further called
the D(α)(G)-bases and the sets of variables x(α)

a = (xαa,1, . . . , xαa,dα) are called D(α)(G)-
covariants. The name covariant is of classical origin (Weyl, 1946) and we use it instead
of terms like symmetry-adapted basis or form-invariant basis which can be found in the
literature. If the irep is one-dimensional, the matrices D(α)(g), g ∈ G are identical with
characters χα(g). In this case, a χα(G)-covariant takes the form of one variable xαa; such
covariants are also called relative invariants and if χ1(G) is the identity irep they are called
invariants. Covariants are compact mathematical entities; we can define linear combina-
tions of D(α)(G)-covariants and hence also the linear independence of D(α)(G)-covariants.
The advantage of D(α)(G)-bases and of D(α)(G)-covariants is rather obvious. Instead of
handling n×n matrices which express the action of G on the space V (n) we have to work
with minimal possible dimensions of irreducible subspaces which are transformed inde-
pendently. Of course, if we want to use these advantages, we must develop methods for
the calculation of D(α)(G)-bases and/or of D(α)(G)-covariants. This will be done below
in the section Tensorial covariants for tensor spaces and in the section on the Extended
integrity bases for polynomial spaces.

The content of this section is a consequence of Schur’s lemma and it is valid only if
we consider representations in the field of complex numbers C; we shall use the abbre-
viation C-irep or just irep. When considering tensor properties we use representations of
real spaces and accordingly we also use the decomposition of these representations into
representations which are irreducible over the real field R; sometimes they are called the
“physically irreducible representations” or abbreviated as “pireps; we shall use the abbrevi-
ation R-irep. Some R-ireps do not reduce when the field is extended to C; to those ireps
we can apply all results of the next section; some two-dimensional R-ireps reduce into
pairs of complex conjugate C-ireps when the field is extended. The necessary amendment
of the consequences is simple and we shall handle it in one standard manner later under
the heading The standard transformations.

Remark: In spectroscopy, the consequence of the distinction between R-reducibility
and C-reducibility is known as the “Kramers degeneracy”. In its general form, the
relationship between R-ireps and C-ireps may be quite complicated. In our cases we
are handling the simplest possible situation.

Explicit irreducible representations and typical variables: For the purposes of
tabulation it is suitable to introduce rather abstract carrier spaces, bases and variables.
The idea is very old and stems from the theory of invariants where an analogous approach
is known as the symbolic method (Weitzenböck, 1923). For a given group G we introduce
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the typical carrier space Vo = ⊕|K|
α=1Vα which contains exactly once a carrier space Vα for

each class χα(G) of ireps. In each class χα(G) we choose a certain standard matrix irep
D(α)(G) of the group G. To this irep there corresponds a basis {ea,1, . . . , eα,dα} called the
typical D(α)-basis and a set of variables x(α) = (xα,1, . . . , xα,dα), called the typical variables.
The whole set x(α) is called the typical D(α)-covariant. The concept has been revived
together with the term covariant by the author (Kopský, 1976a) for the purposes of suit-
able recording and handling of transformation properties of tensors and of polynomials.
The typical variables are now standardized in comparison with their original labelling; in
tables they appear as standard typical variables.

The spectroscopic and standard nomenclature of ireps:

Spectroscopic notation: Again, there does not exist a unique and generally accepted
symbolism of classes of ireps of the point groups. The most commonly used spectroscopic
notation for classes of ireps uses letters A and B for one-dimensional ireps, E for two-
dimensional ireps, and T for three-dimensional ireps [letters F , H , and I are used for the
four-, five-, and six-dimensional ireps which appear either as ireps of the icosahedral group
or as double-valued ireps of the cubic and icosahedral group; cf. Altmann & Herzig (1994)
or Bradley & Cracknell (1972)]. The letters, if used more than once, are distinguished
either by numerical subscripts or by primes and double primes.

The number of ireps of a centrosymmetric group Gh = G ⊗ I is twice the number of
ireps of the group of proper rotations G and they are distinguished by parity. To each irep
χα(G) of G there correspond two ireps of Gh: χ+

α (Gh) of even parity and χ−
α (Gh) of odd

parity. Matrices (and accordingly also characters) of a proper rotation g and respective
improper rotation ig = gi in the group Gh are identical with the matrix (and character)
of g in the group G for the even-parity irep χ+

α ; for the odd-parity irep χ−
α the matrix

(and character) of ig has the opposite sign. In spectroscopic notation, these classes of
ireps are distinguished by subscripts “g” (German “gerade” = “even”) and “u” (German
“ungerade” = “odd”).

Uniaxial groups and groups T (23) and Th (m3) have two-dimensional real ireps which
split in the field of complex numbers into two conjugate complex one-dimensional ireps.
These one-dimensional ireps are denoted by 1E and 2E with numerical subscripts when
more than one class of such ireps exists (in the case of crystallographic groups the sub-
scripts are maximally 1 and 2) and with subscripts “g” and “u” if parity is to be distin-
guished. The respective real two-dimensional irep is then denoted by 1E ⊕2 E.

Standard notation and standard typical variables: The spectroscopic notation is insuffi-
cient for our purposes because it specifies the classes of ireps, while we shall work with
the explicit matrix form of ireps and with their respective bases. We developed a special
notation for our purposes which is called here the standard notation. One of the advantages
of this notation is the transparency of subduction relations which correlate the typical
variables (and consequently all variables) for a group with variables for its subgroups.
The scheme actually includes all finite groups and is extremely convenient for considering
the transformation properties of tensors. First we shall describe the choice of the standard
typical variables for groups of proper rotations.

Groups of proper rotations: The standard typical variables for real one-dimensional
ireps are denoted by sans-serif letters xi with numerical subscripts i = 1, 2, 3, 4. The
index 1 is reserved for that variable which transforms by the identity irep χ1 so that x1
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is the typical invariant. Other variables xi are called the typical relative invariants because
the actual variables transforming in the same way are usually called relative invariants.

The proper rotation groups D2 (2x2y2z), D4z (4z2x2xy) and D6 (6z2x2y) have four one-
dimensional ireps and the labels are chosen so that the subscript 2 corresponds to an irep
with kernel C2z (2z), C4z (4z) and C6 (6z), respectively, while subscript 3 corresponds to
ireps with kernels C2x (2x), D2 (2x2y2z) and D3x (3z2x), subscript 4 to ireps with kernels

C2y (2y), D̂2 (2xy2xy2z) and D3y (3z2y). In other words, index 2 indicates that the variable
x2 does not change sign under rotations about the principal axis, index 3 indicates that
the variable x3 does not change sign under the twofold rotations about axes conjugate
with 2x and index 4 indicates that the variable x4 does not change sign under the action
of the other set of conjugate axes. This rule is extended to noncrystallographic proper
rotation groups Dn (nz2x12x2) with even n.

The proper rotation groups D3x (3z2x), D3y (3z2y) and O (432) have two real one-
dimensional ireps and the subscript 2 is used for the nontrivial irep. Hence x2 is that
variable which does not change sign under the rotations about the principal axis and
changes sign under the rotation about auxiliary axes [in the case of group O (432) it does
not change under the elements of the subgroup T (23) and changes sign under the action
of elements from the coset 4zT (4z.23)]. Again, the same holds for noncrystallographic
proper rotation groups Dn (nz2x) with odd n.

The subgroups C2z (2z), C4z (4z) and C6 (6z) have two one-dimensional ireps and the
nontrivial irep is assigned the subscript 3. Accordingly, the subduction from the respective
dihedral groups sends the variables x1 and x2 into x1, the variables x3 and x4 into x3.

The groups Dn and Cn with n ≥ 3 have two-dimensional real ireps. These ireps are
irreducible over the real field and for groups Dn also in the complex field. For the groups
Cn they are reducible in the complex field into a pair of conjugate complex ireps. The
variables (x1, y1) which appear in all these groups have the meaning of the components of
an ordinary vector in the xy plane. The variables (x2, y2) which appear in groups D6 and
C6 (actually, they already appear in the noncrystallographic groups D5 and C5) transform
under a rotation by an angle ϕ about the z axis like components of an ordinary vector
under a rotation by 2ϕ about the z axis. Analogously, variables (xn, yn), n ≥ 3 which
appear in noncrystallographic groups with higher order of the principal axis transform
under a rotation by an angle ϕ about the z axis like components of an ordinary vector
under a rotation by nϕ about the z axis. The index n of these variables has an informative
value; it is equal to the lowest-rank tensor the components of which transform like these
variables.

Two-dimensional real ireps also appear for groups T (23) and O (432), where variables
are denoted by (x3, y3). This irep is irreducible over the complex field for the group O
(432) and reducible into a pair of conjugate complex ireps in the group T (23).

The reduction of two-dimensional ireps is considered below on a unified basis for all
cases in the section Standard transformations, where complex variables are introduced to
complete the scheme and the consequences of the violation of conditions for Schur’s lemma
are explained.

Three-dimensional ireps appear for groups T (23) and O (432), where variables are
denoted by (x1, y1, z1). These variables transform like the components of a vector in the
space V (3). To the second three-dimensional irep of the group O (432) we assign variables
(x2, y2, z2) which transform like the product x2(x1, y1, z1) (see also the Clebsch–Gordan
product tables, which are very illustrative for exploring various relations between trans-
formation properties of standard typical variables).
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Noncentrosymmetric groups: The standard typical variables for a noncentrosymmetric
group H ∪ igH are identical to the standard variables of the respective group of proper
rotations G = H ∪gH . Their transformation properties are defined so that each standard
variable transforms under an element of H ∪ igH in the same way as under the respective
element of the proper rotation group G = H ∪ gH .

Centrosymmetric groups: A centrosymmetric group Gh = G ⊗ I = G ∪ iG contains
all elements g ∈ G and of the coset ig = gi ∈ iG = Gi. The number of conjugacy
classes is doubled as compared with conjugacy classes of G and the number of ireps and
of variables is also doubled. Even and odd ireps are distinguished by superscripts + and
−, respectively; these superscripts indicate the parity of the variable under the action of
the space inversion i; variables with the superscript + do not change sign, variables with
the superscript − change sign under the action of i. Each variable x+ then transforms
in the same way under the action of both elements g ∈ G and ig ∈ iG as the variable x
transforms under the element g ∈ G, while the variable x− transforms under an element
g ∈ G in the same way as x and under the action of ig ∈ iG it transforms in the same
way as x under the action of g ∈ G with an additional change of the sign.

Character and representation tables: Character tables represent historically an
important tool for considering selection rules. Thus, in tensor calculus, it is possible
to calculate quickly the number of linearly independent components of a tensor which
belong to a particular irreducible representation. The number of those which belong to the
identity representation is then the number of nonvanishing independent tensor parameters
– invariants. Character tables are therefore also provided, although the program enables
us to find more explicit results – instead of getting the numbers of tensorial components
we can find an exact form of tensor components which transform like the typical variables
(see the tables of tensorial covariants). To specify transformation properties of typical
variables we have to specify the matrices of the group elements by which they transform.

Character tables are provided in the Standard and Spectroscopic notations, which are
compared in the files Correlation Std./Spectro. As a standard notation of one-dimensional
real characters we use the letter χi, i = 1, 2, 3, 4 with the same subscript as that of the
respective variables xi. Characters of two- and three-dimensional ireps are denoted by
upper-case Xi, i = 1, 2, 3 and characters of pairs of complex conjugate one-dimensional
ireps are denoted by χic and χ∗

ic, i = 1, 2, 3. For centrosymmetric groups we add the
superscripts + and −.

In the case of Abelian groups, the elements are also given either in the spectroscopic
or standard notation; otherwise the characters are given as functions of conjugacy classes
for which we use the same symbols in both cases.

Tables of explicit representations are given in an abbreviated form, where only the
matrices of the group generators are presented, and in full where all distinct matrices are
given. In these tables we use only the standard form. Characters of one-dimensional ireps
coincide with transformation matrices for which we use the same symbols. For matrices of

two-dimensional ireps we use the symbols D
(α)
R if they are real or D

(α)
C if they are complex;

the three-dimensional ireps are given only in a real form.
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The standard transformations

The action of a rotation by ϕ around the z axis, denoted as an operator g(ϕ), is
expressed in the Cartesian basis (ex, ey, ez) by the equations

g(ϕ)ex = ex. cos ϕ + ey. sin ϕ,

g(ϕ)ey = −ex. sin ϕ + ey. cos ϕ,

g(ϕ)ez = ez,

to which there corresponds a matrix

D
(1)
R [g(ϕ)] =

 cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1


of a real vector representation D

(1)
R . These vectors transform under the action of a twofold

rotation 2x as
2xex = ex 2xey = −ey 2xez = −ez,

which is expressed by the matrix:

D
(1)
R (2x) =

 1 0 0
0 −1 0
0 0 −1

 .

We introduce standard typical vectors (enx, eny) in the xnyn plane which transform
by definition under the action of g(ϕ) and 2x according to equations:

g(ϕ)enx = enx. cos nϕ + eny. sin nϕ,

g(ϕ)eny = −enx. sin nϕ + eny. cosnϕ,

2xenx = enx, 2xeny = −eny.

To these transformations there correspond the matrices

D
(n)
R [g(ϕ)] =

(
cos nϕ − sin nϕ
sin nϕ cos nϕ

)
and D

(n)
R (2x) =

(
1 0
0 −1

)
.

of a real vector representation D
(n)
R .

We introduce a standard transformation to complex vectors and variables:

enξ =
1√
2
(enx − ieny), enη =

1√
2
(enx + ieny),

ξn =
1√
2
(xn + iyn), ηn =

1√
2
(xn − iyn).

The reciprocal transformation then reads:

enx =
1√
2
(enξ + enη), eny =

i√
2
(enξ − ienη),
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xn =
1√
2
(ξn + ηn), yn =

i√
2
(ηn − ξn).

Vectors are then expressed in the two bases as

xn = xnenx + yneny = ξnenξ + ηnenη,

and the transformation properties of complex vectors and bases are expressed by

g(ϕ)enξ = einϕenξ, g(ϕ)enη = e−iϕenη

2xenξ = enη, 2xenη = enξ,

so that the rotations are expressed by matrices:

D
(n)
C [g(ϕ)] =

(
einϕ 0
0 e−inϕ

)
and D

(n)
C (2x) =

(
0 1
1 0

)
.

The real pair of variables (xn, yn) is transformed to a complex pair (ξn, ηn) and the real

matrix irep D
(n)
R to an equivalent complex matrix irep D

(n)
C . Both ireps are irreducible

for groups Dn, n ≥ 3 because the twofold rotation 2x swaps the vectors enξ, enη as well
as the variables ξn, ηn.

Matrices D
(n)
C [g(ϕ)] are, however, quasidiagonal (in fact they are diagonal) and cor-

respond to a pair of one-dimensional complex conjugate ireps. Two-dimensional repre-
sentations of uniaxial groups and of groups T (23) and Th (m3) are therefore irreducible
over the real field, but they split into a pair of one-dimensional complex conjugate ireps
in the complex field. As a consequence, the pair of variables (xn, yn) transforms in the
same way as the pair (yn,−xn).

Kronecker products: If the basis vectors (eα,1, eα,2, . . . , eα,dα) of the carrier space
Vα for an irep D(α)(G) are combined with the basis vectors (eβ,1, eβ,2, . . . , eβ,dβ

) of the

carrier space Vβ for an irep D(β)(G), we obtain a set of dαdβ basis vectors (eα,ieβ,j) of the
carrier space Vα ⊗Vβ which is called the direct or tensor product of spaces Vα and Vβ. The
action of the group G on this space is defined by the relation:

g(eα,iαeβ,iβ) =
dα∑

jα=1

dβ∑
jβ=1

D
(α)
jαiα(g)D

(β)
jβiβ

(g)(eα,jαeβ,jβ
).

The matrix representation D(α,β)(G) in terms of matrices of elements g ∈ G,

D
(α,β)
(jαjβ)(iαiβ)(g) = D

(α)
jαiα(g)D

(β)
jβiβ

(g),

is called the direct or Kronecker product of matrix representations D(α)(G) and D(β)(G)
and denoted by D(α,β)(G) = D(α)(G) ⊗ D(β)(G).

The latter space is generally reducible and spaces of the type Vγ appear in the reduction
with certain multiplicities m(α,β|γ) = (1/|G|)∑g∈G χα(g)χβ(g)χ∗

γ(g). If the two spaces in

the product belong to the same irep D(α)(G), then the product space Vα ⊗ Vα splits into
the space of symmetric and antisymmetric combinations:

1√
2
(eα,iαeα,jα + eα,jαeα,iα) and

1√
2
(eα,iαeα,jα − eα,jαeα,iα).
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The spaces are usually denoted as [Vα]2 for the symmetric case and {Vα}2 for the
antisymmetric case and both spaces are invariant under the action of G and are generally
reducible. The multiplicities then split into the sum of multiplicities for the symmetric
and antisymmetric part: m(α,α|γ) = m[α,α|γ] +m{α,α|γ}. This theory boils down in practice
to tables of Kronecker products which are again given in the Spectroscopic and Standard
notation. Rows and columns correspond to ireps in either of the notations and at the
intersections are found direct sums of ireps into which the product of two ireps splits; if
the resulting irep corresponds to a space of antisymmetric combinations, the respective
symbol is given in braces.

These tables facilitate the calculation of selection rules and they are widely used in
spectroscopy. They can be used to calculate the numbers of independent tensor compo-
nents and hence to find how many new independent parameters appear in a tensor at a
phase transition or the numbers of components in which two domain states differ. The
tables of Clebsch–Gordan products, described in the next section, represent an explicit
counterpart of the Kronecker product tables.

Clebsch–Gordan products: The calculations underlying this program were per-
formed by the method of Clebsch–Gordan products in typical variables. The method
stems originally from the theory of quantum momentum. Irreducible representations of
the orthogonal group O(3) are labelled by the quantum number j of the total momen-
tum and the wave functions ψjm form irreducible spaces of dimension 2j + 1 with m =
−j, . . . , j−1, j where m defines the projection of the momentum on a chosen axis, usually
the z axis. In a system of two particles in spherical field, the total wave function ΨJM is
expressed as:

ΨJM =
∑

m1+m2=M

(j1m1j2m2|JM)ψj1m1ψj2m2 , (iii)

where (j1m1j2m2|JM) are the so-called Clebsch–Gordan coefficients, also called the coef-
ficients of vector addition.

Quite analogously we can introduce Clebsch–Gordan coefficients for the multiplication
of irreducible representations of any group G. The direct product Vα ⊗ Vβ of two typical
irreducible spaces splits according to the fundamental theorem of representations into irre-
ducible subspaces Vγm, where m = 1, 2, . . . , m(α,β|γ) = 1

|G|
∑

g∈G χαχβχ∗
γ. The generalized

Clebsch–Gordan formula reads:

E
(m)
γk =

dα∑
i=1

dβ∑
j=1

(αiβj|γk)(m)eα,ieβ,j. (iv)

The label m does not appear in the classical formula (iii) because multiplicities are in
this case always m(j1, j2|J) = 1. We can also rewrite the latter formula in terms of the
standard variables:

X
(m)
γk =

dα∑
i=1

dβ∑
j=1

(αiβj|γk)(m)∗xαixβj , (v)

and in the case α = β we also have to distinguish the symmetrized and antisymmetrized
cases. Clebsch–Gordan coefficients (αiβj|γk)(m) for the crystal point groups were calcu-
lated by Koster, Dimmock, Wheeler & Statz (1963). They are important in quantum-
mechanical calculations when orthonormality of wave functions is required.
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Our aim is to find transformation properties of tensors and polynomials and we can
disregard the normalization conditions. For calculations of this type, tables of Clebsch–
Gordan products are more convenient. Without writing formulas, we define Clebsch–
Gordan products as those D(γ)-covariants whose components are bilinear combinations
of components of a D(α)-covariant (xα1, . . . , xαdα) and a D(β)-covariant (xβ1, . . . , xβdβ

).
The number of such independent covariants is given by Kronecker products but their
calculation for the crystal point groups is relatively easy. They are collected in tables
where the heading of each table lists the typical D(γ)-covariants and in the column headed
by such a covariant are given bilinear combinations of typical variables which transform
in the same way as the variables (xγ1, . . . , xγdγ ). This is actually just another way of
recording the full set of relations (v); to get the Clebsch–Gordan coefficients from tables
of Clebsch–Gordan products it is sufficient to perform the normalization.

It is necessary to realize that variables in tables are just the representatives of actual
variables. In the calculation of the tensor product of any two spaces V1 and V2, we first find
the linear combinations of vector components in the two spaces which transform like the
typical variables. In this procedure, several actual covariants may appear corresponding
to some ireps. The tables give a prescription for how to form bilinear combinations of
them with the desired transformation properties. Such tables were published and their
use described a quarter of century ago (Kopský, 1976a; 1977).

Trivial Clebsch–Gordan products x1(xα1, . . . , xαdα) and (xα1, . . . , xαdα)x1 are not ex-
plicitly written down in the tables; it is clear that they transform like (xα1, . . . , xαdα). The
antisymmetric expressions like x1y1 − y1x1 express formally all possible bilinear combi-

nations x
(a)
1 y

(b)
1 − y

(a)
1 x

(b)
1 , where a, b label various spaces and such combination vanishes

when a = b. To a product such as x3x4 there naturally corresponds the product x4x3 which
is not given in the tables. If replaced by actual variables, we have to distinguish the sym-

metric (x
(a)
3 x

(b)
4 + x

(a)
4 x

(b)
3 ) and antisymmetric (x

(a)
3 x

(b)
4 − x

(a)
4 x

(b)
3 ) combinations which both

transform like the product x3x4. Analogous considerations hold in the case of products of
the type xα(x1, y1, z1) to which there correspond products (x1, y1, z1)xα. Quite generally,
for a certain Clebsch–Gordan product which combines variables of two ireps of different
classes in a certain order, there exists a Clebsch–Gordan product in which the order is
reversed. If the typical variables are then replaced by actual ones, we should create the
symmetric and antisymmetric combinations.

The tables are given in terms of variables which corresponds to relation (v). Analogous
tables can be written for basis vectors. The presentation in terms of variables (compo-
nents of vectors) is more convenient for us to proceed further.

Tensorial covariants: Let us now consider a tensor space V (A) under the action of
the group G ⊆ O(3). According to the fundamental theorem of irreducible representa-

tions, the space splits into a direct sum V (A) = ⊕|K|
α=1 ⊕nα

a=1 V (A)
αa of linearly independent

subspaces V (A)
αa which are irreducible under the action of G and in which we can find bases

{e(A)
αa,1, e

(A)
αa,2, . . . , e

(A)
αa,dα

} which transform according to:

ge
(A)
αa,i =

dα∑
j=1

D
(α)
ji (g)e

(A)
αa,j .

If we know the character X (A)(g) = Tr D(A)(g) of the tensor representation of G on
V (A), the number nα of linearly independent subspaces which transform by an irep of the
class χα(G) can be found from character theory using nα = (1/|G|)∑g∈G X (A)(g)χ∗

α(g).
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Finally, if nα > 1, the decomposition V (A)
α = ⊕nα

a=1V
(A)
αa of the G-invariant subspace V (A)

α

enveloping all subspaces V (A)
αa which transform by ireps of the class χα is not unique. Each

basis of the set of nα bases {e(A)
αb,1, e

(A)
αb,2, . . . , e

(A)
αb,dα

} created by formula (i) transforms in

the same way under G as the bases {e(A)
αa,1, e

(A)
αa,2, . . . , e

(A)
αa,dα

} and spans a subspace Vαb, the

direct sum of which is again the space V (A)
α = ⊕nα

b=1V
(A)
αb .

The tensor A ∈ V (A) is expressed as

A =
∑

i∈I(A)

Aie
(A)
i =

|K|∑
α=1

nα∑
a=1

dα∑
i=1

Aαa,ie
(A)
αa,i =

|K|∑
α=1

nα∑
b=1

dα∑
i=1

Aαb,ie
(A)
αb,i,

where Ai are its components in the Cartesian basis {ei}i∈I(A) while the sets Aαa,i and Aαb,i

are its components in D(α)(G)-bases {eαa,1, eαa,2, . . . , eαa,dα} or {eαb,1, eαb,2, . . . , eαb,dα}.
The sets A(α)

a = (Aαa,1, Aαa,2, . . . , Aαa,dα) and A
(α)
b = (Aαb,1, Aαb,2, . . . , Aαb,dα) are, by

their transformation properties, D(α)(G)-covariants. We can now justify again the use of
the term “covariant”. The linear combination of D(α)(G)-covariants is again a D(α)(G)-
covariant and covariants themselves constitute linear spaces, so the concept of linear
independence applies to them.

Calculation of tensorial covariants: As we concluded at the end of the section Tensorial
representations, we want to avoid calculation of the matrices D

(A)
ij (g). If, instead of that,

we find the D(α)(G)-bases, we can handle the transformations of tensors in these bases in
the simplest possible manner. It is even more suitable for our purposes to find the sets of
linearly independent tensorial covariants to each point group.

The tables of tensorial covariants in this software describe the transformation proper-
ties of tensors whose symbols, intrinsic symmetries and numbers of independent compo-
nents are given in Table 1.

Table 1. Symbols of tensors up to fourth rank

Number of

Rank Jahn symbol Physical meaning of the tensor independent

components

Tensors of material properties

ε 0 ε chirality, enantiomorphism ±1

Pi 1 V vector, polarization 3

ui 2 [V ]2 stress or deformation tensor, permittivity 6

gi 2 εV 2 gyrotropic tensor 6

dij 3 V [V ]2 piezoelectricity 18

Aij 3 εV [V ]2 electro-optic tensor 18

sij 4 [[V ]2]2 tensor of the elastic stiffness 21

Qij 4 ([V ]2)2 elasto-optic tensor 36
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The intrinsic symmetry of physical tensors is denoted by Jahn symbols (Jahn, 1949).
A scalar does not need a symbol or it may be denoted by 1 and it always transforms
as an invariant because it is the invariant of the group O(3). A pseudoscalar is denoted
by ε. A vector is denoted by V . The last column of Table 1 indicates the number
of independent components of each tensor considered. This number must be equal to∑|K|

α=1 n(A)
α dα, where n(A)

α is the multiplicity with which an irep of the class χα(G) appears
in the tensor representation X (A)(G) and dα is its dimension. Therefore n(A)

α is also the
number of independent Dα(G)-covariants.

Tables of tensorial covariants have been calculated by the consecutive use of Clebsch–
Gordan products. In the first step, we determine the transformation properties of a vector,
which is represented by the polarization P = (P1, P2, P3), and of a pseudoscalar ε. The
heading row of each table lists the typical variables in the form of D(α)(G)-covariants.
We know that the components of the deformation tensor u (or alternatively of the per-
mittivity ε) transform like symmetrized bilinear combinations of a vector, i.e. u1 ≈ P 2

1 ,
u2 ≈ P 2

2 , u3 ≈ P 2
3 , u4 ≈ (P2P3 + P3P2), u5 ≈ (P3P1 + P1P3), u6 ≈ (P1P2 + P2P1). Hence,

if we know how P1, P2, P3 map onto typical variables, we can read at once from tables of
Clebsch–Gordan products how linear combinations of u1, u2, u3, u4, u5, u6 are mapped
onto the typical variables. Next we know that the components dij of the piezoelectric
tensor transform like the products dij ≈ Piuj, the components of the elastic stiffness
tensor transform like sij ≈ (uiuj + ujui), the components of the gyrotropic tensor like
gi ≈ εui, the components of the electro-optic tensor like Aij ≈ εdij and the components
of the elasto-optic tensor like Qij ≈ uiuj. The symbol ≈ means here and from now on:
transforms like.

Example: For the group D6 (6z2x2y) we get the transformation properties as follows:
ε ≈ x1, P3 ≈ x2, (P1, P2) ≈ (x1, y1). From Clebsch–Gordan tables we further find:
u1+u2 ≈ P 2

1 +P 2
2 ≈ x2

1+y2
1 ≈ x1, u3 ≈ P 2

3 ≈ (x2)
2 ≈ x1, u1−u2 ≈ P 2

1 −P 2
2 ≈ x2

1−y2
1 ≈ x2.

In the case of the component u6 we have u6 ≈ P1P2 ≈ P2P1 but the D(2)(D6)-covariant
is (P 2

1 − P 2
2 , P1P2 + P2P1); hence the corresponding D(2)(D6)-covariant in components of

tensor u is (u1 − u2, 2u6). Finally, from the D(1)(D6)-covariant x2(y1,−x1) we get the
D(1)(D6)-covariant P3(P1,−P2) ≈ (u4,−u5). Thus we have a complete set of covariants
for the tensor u.

Let us now see the D(1)(D6)-covariant (x1x2 + y1y2, x1y2 − y1x2) as a product of
a D(1)(D6)-covariant (P1, P2) and of a D(2)(D6)-covariant (u1 − u2, 2u6). We get the
D(1)(D6)-covariant (d11 − d12 + 2d26, 2d16 − d21 + d22). On the other hand, we have the
D(1)(D6)-covariant x1(x1, y1) ≈ (u1 +u2)(P1, P2) ≈ (d11 +d21, d22 +d21). The sum of these
two covariants divided by 2 gives another D(1)(D6)-covariant (d11 + d26, d22 + d16) which
is listed in the table together with the D(1)(D6)-covariant (d11 + d21, d22 + d21).

The tables of tensorial covariants presented in this software were calculated and pub-
lished more than two decades ago (Kopský, 1979a,b). Together with tables of domain
structures (here we mean the algebraic structure of tensor characteristics assigned to
different domains) (Kopský, 1982, 1983) they constitute a background for various calcula-
tions connected with tensor changes at ferroic phase transitions including the distinction
of domain pairs and the change of tensor properties on a path across domain walls. The
tables in the software differ from the originals by the systematic choice of symbols and
numerical labels of standard variables. While there exist several textbooks in which the
invariant form of tensors for representative group orientations are given (Voigt, 1910;
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Nye, 1957; Birss, 1964; Sirotin & Shaskolskaya, 1975), there exist, as far as we know, only
attempts to calculate tensorial bases of ireps by Callen (1968) and later by Callen, Callen
& Kalva (1970) for very low tensor rank. Janovec, Dvořák & Petzelt (1975) found some
tensorial bases for ireps, but not always the lowest possible. The central tables of the soft-
ware, which provide information about changes of tensors up to fourth rank and for both
parities, are derived with the use of tables of tensorial covariants. In these tables appear
generally linear combinations of tensor components as parameters of the transition. It is
actually suitable to consider these components as the parameters of tensors and of their
changes in ferroic transitions as shown below in the description of a procedure (Kopský,
2001b,c,d) consisting of the Labelling of covariants and calculation of Conversion equations.

Opechowski’s magic relations: It is also worthwhile to mention that there exist sys-
tematic relations between tensorial covariants of different parities and groups of the same
oriented Laue class. Investigation of such relations was inspired by Opechowski’s ques-
tion about the so-called “magic numbers” (Opechowski, 1975), which was rather promptly
answered by Kopský (1976b). As an example we suggest that the reader looks up and
compares tensorial covariants for the tensors u and g. They have the same transformation
properties for groups of proper rotations. In general, g transforms as εu and ε ≈ x1 for
proper rotation groups. For other groups of the oriented Laue class, ε transforms like one
of the variables x2, x3, x4, and for centrosymmetric groups like x+

1 . We have the same
relationship between tensors A ≈ εd.

If you go through the tables of tensorial covariants, you can observe that tensorial
covariants of tensors of even parity with respect to space inversion i, which here are the
tensors u, A, s and Q, are identical for all groups of the oriented Laue class, and for
a centrosymmetric group they acquire the superscript +. On the other hand, tensors of
odd parity with respect to space inversion i transform in the same manner as the respec-
tive tensors of even parity under the group of proper rotations, while for the remaining
groups of the oriented Laue class the blocks of relative tensorial invariants exchange places
and tensorial covariants are transformed according to rules that can be found from the
Clebsch–Gordan tables. The basic rules were explained in the second paper on tensorial
covariants (Kopský, 1979b) and later rediscovered by Grimmer (1991) in a less general
form.

The relations which exist between tensorial covariants of tensors of the same intrinsic
symmetries but different parities with respect to the space inversion i, time inversion e′

and combined space–time inversion i′ = ie′ = e′i under the action of magnetic groups of
the same oriented Laue class deserve special attention in view of their prominence in a
systematic approach. They are strongly connected with our choice of standard typical
variables and it is our belief that they should be proliferated as a textbook material in
tensor calculus. A complete scheme of their use under the name “Opechowski’s magic
relations” has been prepared for publication.

Labelling of covariants and Conversion equations: Any tensor A ∈ V (A) can be expressed
as

A =
∑

i∈I(A)

Aie
(A)
i =

|K|∑
α=1

n
(A)
α∑

a=1

dα∑
j=1

Aαa,j(G)e
(A)
αa,j(G),

where the first expression depends only on the choice of the index set I(A), while the
second expression depends on the group G, on the choice of its ireps and even on the
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possible choice of bases {e(A)
αa,1(G), e

(A)
αa,2(G), . . . , e

(A)
αa,dα

(G)}.
The latter bases are linear combinations of Cartesian bases

e
(A)
αa,j(G) =

∑
i∈I(A)

C
(A)
i;αa,j(G)e

(A)
i

and there exist relations which convert these bases back to Cartesian ones,

e
(A)
i =

|K|∑
α=1

nα(A)∑
a=1

dα∑
j=1

B
(A)
αa,j;i(G)e

(A)
αa,j(G),

where C
(A)
i;αa,j(G) and B

(A)
αa,j;i(G) are elements of n(A) × n(A) mutually reciprocal matrices

(n(A) = dim V (A)), so that CB = BC = In(A) or explicitly:

|K|∑
α=1

n
(A)
α∑

a=1

dα∑
j=1

C
(A)
i;αa,j(G)B

(A)
αa,j;k(G) = δik and

∑
j∈I(A)

B
(A)
αa,i;j(G)C

(A)
j;βb,k(G) = δαβδabδik.

Applying transformations to tensor components instead of to tensorial bases, we obtain
the relations

Aαa,j(G) =
∑

i∈I(A)

B
(A)
αa,j;i(G)Ai and Ai =

|K|∑
α=1

nα∑
a=1

dα∑
j=1

C
(A)
i;αa,j(G)Aαa,j(G).

The pairs of these relations are given in Appendix E, where the first relations are listed
as the Labelling of covariants, the second as the Conversion equations. The relations are
given for groups of proper rotations and for tensors that are invariant under the space
inversion i starting from the tetragonal groups. They are not necessary for groups up to
orthorhombic because ireps of these groups are one-dimensional and covariants (relative
invariants) to these ireps for groups in standard orientations are identical with Cartesian
components.

The first set of these relations simply assigns certain symbols to covariant tensor
components as they are given in tables of tensorial covariants. The rules for the labelling
of covariants are very simple. For each tensor we use the same letter as for the Cartesian
components. Relative invariants are denoted by sans serif fonts with the same index as the
respective typical variable. If there is more than one relative invariant to a given irep, a
second index is used to distinguish these invariants. Covariants are denoted by a boldface
letter with a superscript in parentheses indicating the label of the irep, and a subscript
labelling individual covariants. Their components contain the irep label followed by a
letter x, y or z indicating the component.

Example 1: We consider the group 6z2x2y (D6) and the electro-optic tensor A. There
is only one invariant denoted by A1, three χ2-covariants A2,1, A2,2, A2,3, one χ3-covariant

A3, and one χ4-covariant A4. Then there are four D
(1)
R -covariants A(1)

1 = (A1x,1, A1y,1),

A
(1)
2 = (A1x,2, A1y,2), A

(1)
3 = (A1x,3, A1y,3), A

(1)
4 = (A1x,4, A1y,4), and two D

(2)
R -covariants

A
(2)
1 = (A2x,1, A2y,1), A

(2)
2 = (A2x,2, A2y,2).

It is important to realize that the number of independent covariant components is the
same as the number of independent Cartesian tensor components. The invariant com-
ponents are suitable tensor parameters for describing a tensor allowed by the symmetry
6z2x2y, while covariant components are suitable tensor parameters for considering the
change of tensor properties at a transition with parent group 6z2x2y, as we show below.
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Example 2: We shall now illustrate briefly how the labelling of covariants and hence
also the conversion equations can be extended to other tensors of the same intrinsic
symmetry and to other groups of the same oriented Laue class. The piezoelectric tensor
d has the same transformation properties under the group 6z2x2y as the electro-optic
tensor A. The labelling of covariants and the conversion equations for this tensor are
therefore obtained if we replace all letters A by letter d, using the same font types and
the same indices and superscripts.

Let us now consider the group 6zmxmy (C6v). Comparing tensorial covariants we see
that they contain the same linear combinations as in the previous case; the only thing
which changes is the labelling of these combinations. Thus we have now three invariants
d1,1 = d31 + d32, d1,2 = d15 + d24, d1,3 = d33, one χ2-covariant d2 = d14 − d25, one χ3-
covariant d3 = d22 − d21 − 2d16, and one χ4-covariant d4 = d11 − d12 − 2d26. In the case of

D
(α)
R -covariants we have to replace dαx,i by dαy,i and dαy,i by −dαx,i.

Example 3: We shall illustrate the calculation of tensor forms with use of the conversion
equations. The linear combination d1 = d14 − d25 of the components of the piezoelectric
tensor is invariant under the action of the group 6z2x2y. We find that a first component
of one of the two D(2)(D6)-covariants is d2x,2 = d14 + d25. We have at once the conversion
equations which involve the components d14 and d25:

d14 =
1

2
(d1 + d2x,2) and d25 =

1

2
(−d1 + d2x,2).

All other Cartesian components are expressed as linear combinations of covariant com-
ponents which belong to non-identity ireps. In the equilibrium state of symmetry 6z2x2y,
all these covariant components as well as the d2x,2 vanish. The invariant d1 is the sole
nonvanishing independent component and there are two Cartesian components which are
expressed through it as

d14 = −d25 =
1

2
d1.

Hence an invariant d1 can be interpreted as an independent parameter which defines
the form of the piezoelectric tensor for the symmetry 6z2x2y.

We consider now the same tensor under the symmetry group 6zmxmy. There are three
independent invariants: d1,1 = d31+d32, d1,2 = d15+d24, and d1,3 = d33; the third coincides
with a Cartesian component. The Cartesian components which occur in the first two also
occur in covariant components: d2x,1 = d32 − d31 and d2x,2 = d24 − d15. From this we
obtain the conversion equations:

d31 =
1

2
(d1,1 − d2x,1) and d32 =

1

2
(d1,1 + d2x,1),

d15 =
1

2
(d1,2 − d2x,2) and d24 =

1

2
(d1,2 + d2x,2).

Setting the covariant components to zero, we have the nonvanishing Cartesian com-
ponents: d31 = d32 = 1

2
d1,1, and d15 = d24 = 1

2
d1,2 and, of course, d33 = d1,3, which may

be called a trivial conversion equation.
Invariant tensor components are therefore suitable parameters for the specification of

a tensor under certain symmetry. It will be shown in Part B that covariant components
are suitable parameters for describing the changes of tensors at symmetry descents.
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Extended integrity bases: The extended integrity bases are a powerful tool for
the determination of the form of thermodynamic potentials, and for finding the “faint
interactions” and “switching interactions”. All these tasks require the knowledge of trans-
formation properties of polynomials in certain variables. We start with a space V (n)
and consider the space P(x) of polynomials p(x1, x2, . . . , xn) in components of a vector
x =

∑n
i=1 xiei ∈ V (n). Such space splits into subspaces P(k)(x) of polynomials of the same

order k. Let us assume that an action of the group G is given on V (n); this action induces
the action of G on the polynomial space and the subspaces P(k)(x) remain invariant under
this action. Just like any space invariant under the action of G, these subspaces split fur-
ther into subspaces P(α,k)

a (x) which transform by ireps D(α)(G) and whose direct sum is
the whole space P(k)(x). To each of the subspaces P(α,k)

a (x) there corresponds a poly-

nomial D(α)(G)-covariant p(α,k)
a (x) = [p

(α,k)
a,1 (x), . . . , p

(α,k)
a,dα

(x)], the components of which

span the subspace. Components of all these D(α)(G)-covariants are linearly independent
and span the whole subspace P(k)(x) of homogeneous polynomials of the same order k.
The transformation properties of these polynomials are the same as those of completely
symmetrized tensors; in other words, if n = 3, then the space of the polynomials behaves
like the space [V (3)]k.

We denote in the following by I(x) the polynomial invariants for which

GI(x) = I(x)

for every g ∈ G, by p(α)(x) the polynomial χα(G)-covariants (relative invariants) which
transform by one-dimensional irep χα(G), so that

gp(α)(x) = χα(g)p(α)(x),

and by p(α)(x) = [p
(α)
1 (x), . . . , p

(α)
dα

(x)] the polynomial D(α)(G)-covariants, the components
of which transform according to

gp
(α)
i (x) =

dα∑
j=1

D
(α)
ij (g)p

(α)
j (x).

Hence the transformation properties of polynomial covariants and their components
are, by definition, again identical with the transformation properties of typical covariants
and typical variables. The whole space P(x) of polynomials splits under the action of G
into a direct sum of irreducible subspaces

P(x) = ⊕∞
k=0 ⊕α ⊕aP(α,k)

a

and there is a one-to-one correspondence between each such decomposition and the com-

plete sets of linearly independent D(α)(G)-covariants p(α,k)
a (x) = [p

(α,k)
a,1 (x), . . . , p

(α,k)
a,dα

(x)].
Calculation of polynomial invariants and covariants can again be performed consecu-

tively, with the use of Clebsch–Gordan multiplication, as in the case of tensorial covariants.
While the tensor spaces of each rank and intrinsic symmetry are of finite dimensions, the
space of all polynomials is of an infinite dimension. In practical calculations of the thermo-
dynamic potential or of faint and switching interactions we use, as a rule, the expansion
in a power series in the respective variables so that we actually also need to know the
polynomial covariants only to a certain finite order.

There exists an important difference between the calculation and recording of tensorial
and polynomial covariants. Tensors form linear spaces while polynomials form an algebra.
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Let us recall the difference: In a linear space, each linear combination of its elements also
belongs to the space. In an algebra, the product of elements and hence a polynomial in
the elements also belongs to the algebra. As a result, tensorial D(α)(G)-covariants form
linear spaces and we have to find bases of linearly independent covariants of each tensor.
A linear combination of polynomial D(α)(G)-covariants is again a polynomial D(α)(G)-
covariant, as in case of tensorial covariants. In addition, if we replace in any polynomial
Po(z1, . . . , zn) its variables zj by invariant polynomials Ij(x), then the resulting polynomial
I(x) = Po[I1(x), . . . , In(x)] is again an invariant polynomial. Finally, a multiplication of
a polynomial D(α)(G)-covariant by a polynomial invariant results again in a polynomial
D(α)(G)-covariant. Using these relations we have developed a special algorithm (Kopský,
1975, 1979c,d,e) to calculate so-called extended integrity bases of polynomial algebras. This
elegant and powerful mathematical result, which enables us to describe the whole polyno-
mial algebra through a finite set of polynomials, has deep historical roots. It was proved a
long time ago that a finite set of polynomial invariants exists such that any other polyno-
mial invariant can be expressed as a polynomial in these invariants (Hilbert, 1890, 1893;
Noether, 1916; Weyl, 1946). This statement is referred to as Noether’s theorem and such
sets received the name integrity bases of polynomial invariants. Such bases were actually
calculated for the point groups by Döring (1958) in the study of magnetic anisotropy. It
appears, however, that finite bases also exist for polynomial covariants; these have the
property that any polynomial D(α)-covariant can be expressed as a linear combination of
basic D(α)-covariants with polynomial covariants as coefficients. A series of papers was
published in the 1970s (Killingbeck, 1972; McLellan, 1974; Patera & Winternitz, 1975;
Patera, Sharp & Winternitz, 1978; Kopský, 1975, 1979c,d,e) in which methods for the
calculation of polynomial covariants were developed and extended integrity bases actu-
ally calculated for ireps of crystallographic point groups and double crystallographic point
groups. The Montreal group of Patera, Sharp and Winternitz used the theory of Molien
series to calculate the numbers of polynomial covariants in such bases and then calculated
them by brute force. Kopský used a special algorithm to achieve analogous results. The
main theoretical result reads:

Fundamental theorem on extended integrity bases:

Let x = (x1, x2, . . . , xn) be a vector of an n-dimensional space V (n) on which the
action of a finite group G is defined. Let further D(α)(G) be a complete set of irreducible
matrix representations of the group G. We consider the space of polynomials on V (n).
The following statements hold:

1. There exists a finite set of polynomial invariants Ij(x), j = 1, 2, . . . , n, called free
(another term is numerator) invariants and a finite set of so-called transient (another term
is denominator) invariants Jk(x), k = 1, 2, . . ., such that any polynomial invariant I(x)
can be expressed as:

I(x) = Po[I1(x), . . . , In(x)] +
∑
k

Pk[I1(x), . . . , In(x)]Jk(x). (J)

2. For each irep D(α)(G) there exists a finite set of polynomial D(α)(G)-covariants

p(α)
a (x) = [p

(α)
a,1 (x), . . . , p

(α)
a,dα

(x)] such that any other D(α)(G)-covariant can be expressed
as:

p(α)(x) =
∑
a

Pαa[I1(x), . . . , In(x)]p(α)
a (x). (K)
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The set of basic invariants is called the integrity basis of polynomial invariants on the
space V (n) under the action of the group G. The integrity basis together with sets of
basic covariants p(α)

a (x) is called the extended integrity basis of polynomial algebra P(x)
under the action of the group G.

Notice that the number of free invariants is the same as the number of variables
(x1, x2, . . . , xn); the number of transient invariants is connected in a rather refined man-
ner with the characters. Other names of these invariants – denominator and numerator –
are connected with the appearance of their numbers either in the numerator or denomi-
nator of Molien series.

From the relations (J) and (K) we get relations for transformation properties of “well
behaving functions” by which we mean the functions which can be approximated by poly-
nomials.

1. A well behaving function F(x) on the space V (n), invariant under the action of the
group G can be expressed as:

F(x) = Fo[I1(x), . . . , In(x)] +
∑
k

Fk[I1(x), . . . , In(x)]Jk(x).

2. A functional D(α)-covariant F (α)(x) = (F
(α)
1 (x), . . . , F

(α)
dα

) whose components are
well behaving functions can be expressed as:

F (α)(x) =
∑
a

Fαa[I1(x), . . . , In(x)]p(α)
a (x).

Here Fo[I1(x), . . . , In(x)], Fk[I1(x), . . . , In(x)], Fαa[I1(x), . . . , In(x)] are well behaving
functions whose arguments are the free invariants.

On the face of it, this is very general result which might prove useful in other instances.
However, in the usual models we use the power expansion in terms of x, so that the use
of the extended integrity bases is rather in the realm of basic polynomials from which
such an expansion to any degree can easily be derived. In addition, we cannot present all
spaces on which a group G may act and it is also not necessary. For practical purposes,
it is sufficient to have the extended integrity bases only for the typical spaces Vα.

Extended integrity bases of irreducible matrix groups: Our final practical aim
is to give the extended integrity bases from which all interactions occurring in the theory
of phase transitions can be derived. It appears that we actually only need the extended
integrity bases of irreducible matrix groups. Let us consider the simplest example, when
the irep χα(G) is real one-dimensional, so that the variable which belongs to it is xα.
Whatever the group G and whatever the label α, we always face the same situation:
(i) The integrity basis of invariants contains only the invariant x2

α. (ii) The basis of χα(G)-
covariants (relative invariants) contains only the χα(G)-covariant xα. (iii) No functions of
xα exist which will be the components of covariants belonging to any other irep of G.

Points (i) and (ii) are just another expression of the fact that all invariants are, in this
case, even functions of xα, all χα(G)-covariants are odd functions of xα. Other covariants
are not generated by functions of xα.

We shall now consider the general case of an irep D(α)(G), so that our variables are
now the components of a typical D(α)(G)-covariant x(α) = (xα1, . . . , xαdα). We denote
by Hα ⊆ G that subgroup of G of elements h ∈ Hα for which D(α)(h) = Idα – the dα-
dimensional unit matrix. This group is the kernel of the irep D(α)(G) and each coset in
the resolution

G = Hα ∪ g2Hα ∪ . . . ∪ gpHα,
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where p = [G : Hα] is the index of Hα in G, contains elements gih (h ∈ Hα) to which the
irep assigns the same matrix D(α)(gi) = D(α)(gih).

The action of the group G on the space Vα can therefore be viewed as an action of a
group Hα ≈ G/Hα, isomorphic with the factor group of G over Hα. Each operator γi ∈ Hα

represents the identical action of the elements of the whole coset giHα on the space Vα.
The group Hα has its own set of classes of ireps χβ(Hα) to which there correspond the
typical spaces Vβ. In each of these classes we choose a certain matrix form D(β)(Hα) which
defines the typical covariants x(β) = (xβ1, . . . , xβdβ

). Each of these classes defines uniquely

a class χβ(G) and a specific matrix form D(β)(G) of an irep of the group G by assigning to
each element g ∈ G the character χβ(g) = χβ(γi) and matrix D(β)(g) = D(β)(γi) of that
element γi ∈ Hα which corresponds to the coset giHα to which g belongs. Such classes
of ireps and such specific matrix ireps of the group G are called engendered by respective
classes and by specific matrix ireps of the group Hα.

Now we consider the algebra of polynomials in the variables (xα1, . . . , xαdα). From
the consideration above we see that the extended integrity basis of this algebra depends
only on the matrix group D(α)(Hα). Indeed, we consider the space Vα under the action
of the group Hα to get the integrity basis of invariants Ij(x

(α)), Jk(x
(α)) and the bases of

covariants p(β)
a (x(α)), where D(β)(Hα) are matrix ireps of the group Hα. Each invariant of

this group is at the same time an invariant of the group G and each D(β)(Hα)-covariant
is at the same time a D(β)(G)- covariant where D(β)(G) is an irep of G engendered by the
irep D(β)(Hα) of Hα. This relationship between ireps of a group and those of its factor
group has another important consequence formulated as the representation generating
theorem (Burnside, 1955).

Representation generating theorem: The ireps of the class χα(Hα) are faithful and the
representation generating theorem asserts that a faithful representation (not necessarily
irreducible) generates all other representations via polynomials. In other words, to each
irep D(β)(Hα) there exists a polynomial D(β)(Hα)-covariant p(β)(x

(α)) in variables of the

D(α)(Hα)-covariant x(α) = (xα,1, . . . , xα,dα).
For the group G this implies that to each irep D(β)(G) engendered by an irep D(β)(Hα)

there exists a polynomial D(β)(G)-covariant p(β)(x
(α)) in variables of the D(α)(G)-covariant

x(α) = (xα,1, . . . , xα,dα). The physical significance of representation generating theorem
(Kopský, 1979f) will be discussed below in connection with “faint interactions” and “switch-
ing of domain states” by external fields in the theory of structural phase transitions.

Here we shall give two examples of its consequences. In the history of magnetic mater-
ials the concept of a “cubic ferromagnet” appears. However, a cubic ferromagnet can-
not exist because the existence of magnetization in a sample contradicts cubic symmetry.
According to the representation generating theorem there must exist an interaction (mag-
netostriction) which distorts the cubic symmetry. Since the magnitude of this interaction
is usually small, such a distortion was found later by more precise measurements.

In the early stages of the investigation of ferroic phase transitions, the question arose
whether to each irep of a point group a tensorial basis (covariant) exists. Again, the
answer is yes, because vector representation of each point group is faithful. This can be
easily extended to magnetic point groups as well.
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Part B: Ferroic and equitranslational phase transitions

We consider structural phase transitions in a Landau sense, i.e. those which are
accompanied by a symmetry descent. Such a structural phase transition is called “fer-
roic” if it is accompanied by a change of the point symmetry of the material. The results of
tensor analysis also apply to the cases of order–disorder transitions accompanied by sym-
metry descent. Every equitranslational phase transition is ferroic; non-ferroic transitions
are always associated with a symmetry descent in which the unit cell of the low-symmetry
phase contains several original unit cells.

It is well known that the point symmetry restricts the form of tensors which express
material properties. These restrictions can be expressed in two ways:

(i) Nonvanishing Cartesian tensor components can be specified. If they are not inde-
pendent, then relations between them must be also given.

(ii) The tensor components can be expressed in terms of independent parameters.
Such parameters are the invariants of the tensor and they are generally expressed as
linear combinations of Cartesian components. Vice versa, the Cartesian components are
then expressed as linear combinations of these parameters.

Each ferroic phase transition is characterized by an onset of new tensor parameters
which are forbidden by the symmetry of the parent phase but allowed in the ferroic phase.
These parameters are again generally linear combinations of Cartesian tensor components
which transform under the parent group in a certain well defined manner. In other words,
they can be interpreted as covariant tensor components related to certain suitable choices
of ireps. Such are those choices when a covariant tensor component with reference to the
parent symmetry turns into an invariant with reference to the ferroic symmetry. These
components are considered here as tensor parameters of the ferroic transition and of the
domain states arising in such a transition. The tables of symmetry descents within the
classical point groups provide information about tensor parameters for tensors up to fourth
rank and this information can be transferred to the Cartesian form of tensors in different
domain states with the use of “Conversion equations”.

The physical background of the origin of structural phase transitions lies in instabili-
ties of certain modes of motion and analysis in terms of the Landau model requires mode
analysis with a subsequent consideration of the Landau potential. In the case of non-
equitranslational transitions, the “soft mode” transforms by a certain irep of the parent
space group which is associated with a nontrivial wavevector k. Equitranslational transi-
tions are associated with “homogeneous” instabilities, associated with wavevector k = 0.
All ireps of the parent space group which correspond to homogenous modes engender
ireps of the respective point group.

Strictly speaking, an equitranslational structural phase transition, considered as a
transition without any change of the translational symmetry, is actually a theoretical
fiction. In fact, the structures of a crystal above and below the phase transition line are
not rigid structures; at least the lattice parameters and parameters of Wyckoff positions
(when positions with free parameters are occupied) change continuously with variations
of temperature and of hydrostatic pressure above as well as below the transition line in
the phase diagram. Accordingly, the space symmetries change continuously within the
regions of the same phase. What remains invariant within this region is the structure
type and the respective space-group type.

At the transition point we encounter a change of the structure type as well as of the
type of the space-group symmetry. If the transition is continuous, small deviations from
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the high-symmetry structure type develop with small deviations of the external conditions
from the transition line into the region of the low-symmetry phase.

The central point of this software contains information about changes of tensor prop-
erties of crystals at ferroic phase transitions and about the form of relevant interactions.
This information is contained in tables with headings Symmetry descent G ⇓ H or Symme-
try descent G ⇓ F1, . . . , Fp, where G is the parent point symmetry, H the ferroic symmetry
if it is a normal subgroup, and F1, . . . Fp is the set of conjugate ferroic symmetries. Access
to these tables is through the choice of the item Subgroups. On choosing this item, a
lattice of subgroups of the point group G under consideration appears on the screen.

Lattices of subgroups
Lattices: In this context, the term lattice means a special type of a partially ordered

set, the general properties of which are described in detail by Birkhoff (1948). Lattices
of subgroups are considered in the textbook by Hall (1959); their importance in the
theory of structural phase transitions was realized by Ascher (1968), who prepared the
first lattices of equitranslational subgroups of space groups. Lattices of subgroups of the
point groups are considered in this context by Kopský (1982). One should realize that
between subgroups of a given group there exist inclusion relations, so that we can say
that a certain group F is larger than another group K in the sense that F contains K;
written as K ⊂ F . However, such a relation does not generally exist between any pair of
subgroups of a given group. The set of subgroups is therefore suitably presented in the
form of a special graph, in which the original group is on the top, connected by lines with
its maximal subgroups which, in their turn, are connected by lines with their maximal
subgroups and so on until we come to the trivial subgroup C1 at the bottom. Subgroups
of the same index in the original group and hence of the same order are presented on
the same level and each subgroup is connected by lines downwards to all its maximal
subgroups and by lines upwards to all its minimal supergroups. From such a presentation
we see all the chains of consecutive subgroups. More than that, from the lattice we can
also find unions F ∨K and intersections F ∧K of any pair F and K of subgroups. Thus
the lattice is certainly more informative than a simple list of subgroups.

Note: Let us recall that the union of groups F ∨ K does not mean the set-theoretical
union of their elements, which is usually not a group at all. The union of groups F
and K contains all products of the elements of both groups and it is also the minimal
group which contains both groups F and K. On the other hand, the intersection F ∧ K
of groups F and K is the maximal group contained in both F and K and it coincides
with the set-theoretical intersection F ∩ K. The symbols ∨ (vee) and ∧ (wedge) are
used quite generally in lattice theory for the least upper bound and greatest lower bound,
which coincide with our definitions of group-theoretical union and intersection. Although
lattices are formally presented in the form of graphs in the sense defined by graph theory
(Ore, 1972), only a few concepts of this theory are used.

The lattices are prepared in a certain default form but the user can rearrange each
lattice into another form either for one-time use or to make it their own default. In
the original arrangement, we collect the sets of conjugate subgroups into blocks. Each
subgroup is framed and the blocks of conjugate subgroups look like a stack of sheets of
paper.

The lattices serve as a menu for calling up informative tables about phase transitions
from the original group to any of its subgroups. Before we describe these tables, we
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would like to introduce a few group-theoretical concepts which will prove useful later. In
this treatment we follow the concepts developed a long time ago in the booklet on fine
structure of domain states (Kopský, 1982) and in three subsequent papers (Kopský, 1983).

Dual lattices: If we take a certain lattice and invert it so that the bottom goes to the
top and vice versa, we obtain a lattice that is called dual to the original one. In the dual
lattice, all inclusion relations are reversed and unions interchange with intersections. In
other words, if we invert the lattice and denote all elements by tilde, then from F ⊂ K,
M = F ∧ K, N = F ∨ K follows K̃ ⊂ F̃ , M̃ = F̃ ∨ K̃, Ñ = F̃ ∧ K̃. This, rather
abstract, algebraic relation has a certain interesting and useful bearing on the theory of
phase transitions as shown below.

Stability spaces: Anticipating the use of group-theoretical concepts for the descrip-
tion of the structural phase transitions, we first explain the relationship between lattices of
subgroups and carrier spaces of ireps of the original group. Let us consider a tensor space
V (A). It contains subspaces V (A)(G) and V (A)(F ) of tensors which are invariant under
the groups G and F , respectively. Such spaces are called the stability spaces of groups G
and F . The subspace V (A)(G) is described by tensorial invariants of the group G, while

the complementary subspace is defined by components of tensorial D
(α)
R (G)-covariants.

In considering the symmetry descent G ⇓ F , we have to find those covariant components
which became invariant under the group F . Though in general there may exist no such
components for a given tensor A, there always exist tensors for which such covariant com-
ponents exist and hence the stability space V (A)(F ) always contains the stability space
V (A)(G) and, for some tensors, this subspace is a proper subspace. The approach via
typical variables and typical carrier space enables the use of the systematic approach.

The typical carrier space Vo = ⊕αVα of the original group G (referred to in the tables
as the Parent group) is a direct sum of the carrier spaces Vα of R-irreducible spaces with
bases {eα,1, eα,2, . . . , eα,dα}. All invariants of the group G are represented by a single
vector e1 or by a single variable x1.

Let us now consider a subgroup F of the group G which is potentially the symmetry of
a certain ferroic state. To this subgroup there corresponds a subspace Vo(F ) = ⊕αVα(F )
of the typical space Vo which contains all those vectors of Vo which are invariant under
the action of the subgroup F . This space is called the typical stability space of the sub-
group F , while individual Vα(F ) are the typical stability spaces of F in the carrier spaces
Vα of individual ireps. Expressing the stability spaces in terms of standard variables,
we obtain the set of invariants of the group F expressed as linear combinations of these
variables. Comparing them with tensorial covariants we obtain immediately those linear
combinations of tensor components which onset at the phase transition from the parent
group G to the ferroic subgroup F . More than that, we can also identify the ireps of the
parent group G to which the onsetting parameters belong. Here we simply use the fact
that subspaces V (A)

αa (G) behave under the action of the group G like copies of the typical
spaces Vα(G).

Duality theorem: It is worth mentioning that the typical stability spaces Vo(F )
form a lattice which is dual to the lattice of subgroups. This is the content of the duality
theorem, which we give without proof. In other words, if F ⊂ K, then Vo(K) ⊂ Vo(F ),
so the typical stability space grows as we go down the lattice of subgroups. Let us point
out that the typical stability spaces Vo(F ) are the stability spaces of subgroups F in the
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typical carrier space Vo of the parent group G and that this is the least space for which
the stability spaces Vo(F ) form a lattice dual to the lattice of the parent group G. The
stability space Vo(G) of the group G itself in its typical carrier space is the one-dimensional
space V1 which contains only the products x1e1 of an invariant typical vector e1 with an
invariant typical variable x1, while the stability space of the trivial subgroup C1 is the
whole typical carrier space Vo of the group G.

The physical content of this statement is clear – a subgroup always allows some tensor
properties which its supergroup does not allow, because every typical variable is repre-
sented by components of some tensors (in fact, tensors up to fourth rank cover all cases).
Thus, the typical stability spaces provide information about newly onsetting tensorial
properties.

The dimensions of stability spaces have an interesting property. It is well known that∑
α

d2
α = |G|,

or, in words, that the sum of squares of dimensions of ireps is equal to the order of the
group. This statement is sometimes referred to as the Burnside theorem. Let us now
denote by sα(F ) the dimension of the stability space Vα(F ). This number is one of the
subduction coefficients – it says how many times an irep of the class χα(G) subduces the
identity irep of the subgroup F . Then the following relation holds∑

α

sα(F )dα = [G : F ],

which we call the generalized Burnside theorem. In particular, if F = H is a normal sub-
group, then sα(H) = dα for those ireps of G which are engendered by ireps of the factor
group H = G/H and sα = 0 otherwise. The latter relation results in [G : H ], which is
identical with the order of the factor group |H|.

Stabilizers and orbits: Let us consider now the action of a group G on a set S.
The elements of S are called points and denoted by S. The action of G assigns to each
element g ∈ G and to each point S ∈ S a point gS. Let us pick up a certain point S.
Some elements f ∈ G may leave the point S invariant, so that fS = S. It is easy to show
that all elements of G which leave the point invariant must constitute a group, which is
called the stabilizer of the point S under the action of G.

We denote this group by F1 and the point by S1. Performing coset resolution

G = F1 ∪ g2F1 ∪ . . . ∪ gpF1,

we can see that all elements of the coset giF1 send the point S1 to the same point Si =
giF1S1 = giS1. The set of points Si is called the orbit. If we pick any point Si of the orbit
and apply an element of the group G to it, we obtain another point of the orbit. Indeed,
gSi = ggiS1 = gjS1 = Sj .

The stabilizer of a point Si is a group Fi = giF1g
−1
i conjugate to the group F1. We

consider now the first normalizer N
(1)
G (F1) of the subgroup F1 in G. From coset resolutions

G = N
(1)
G (F1) ∪ t2N

(1)
G (F1) ∪ . . . ∪ tqN

(1)
G (F1)

and
N

(1)
G (F1) = F1 ∪ s2F1 ∪ . . . ∪ srF1

we obtain
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G = F1 ∪ s2F1 ∪ . . . srF1∪
t2F1 ∪ t2s2F1 ∪ . . . t2srF1∪
................................................
tqF1 ∪ tqs2F1 ∪ . . . tqsrF1.

Changing the indexing of points, starting with S1 → S11 through to Sij = tisjS1, we
find that the orbit splits into q subsets labelled by indices from the set i = 1, 2, . . . , q and
each of these subsets contains r points Sij with fixed index i and j = 1, 2, . . . , r. The
points with the same i have the same stabilizer Fi = giF1g

−1
i . The numbers q and r are

indices of subgroups: q = [G : N
(1)
G (F1)], r = [N

(1)
G (F1) : F1] and p = qr = [G : F1].

Permutation representation: The set S therefore splits under the action of the
group G into disjoint sets, called orbits. The action of the elements g ∈ G is transitive on
each orbit; transitivity means that every element of the orbit is obtained when elements
of the group G act on any chosen element of the orbit. Elements of the group G are
therefore permuting points of the orbit thus defining a permutation representation of the
group G. The kernel of this representation is the group H = core Fi =

⋂q
i=1 Fi, which is

a normal subgroup of G.

Linear orbits and strata: If the set S on which the group G acts is a linear space
V (n), then the elements are vectors x ∈ V (n). If F1 is a stabilizer of a vector x11 ∈ V (n)
then, using the same coset resolution as in the case of the set S, we obtain an orbit of
vectors xij = tisjx11 for which we use the name linear orbit. Since linear spaces are sets
of some special properties, we can expect that linear orbits also have some properties
characteristic for the linear action of the group G. Indeed, if vector x11 generates an
orbit of vectors xij, then every vector ax11, a 
= 0, generates an orbit of vectors axij.
From this we can get the wrong impression that vectors with the same stabilizer F1 form
linear spaces. This, however, is not true, as we can see already by considering the trivial
vector x = 0 which belongs to every linear space and generates an orbit with one vector –
itself. Also, if linearly independent vectors x and y have the same stabilizer F1, then the
stabilizer of their linear combination ax + by certainly contains F1 but is not necessarily
identical with it.

This means that while all vectors of the stability space V (F1) are by definition in-
variant under the group F1, the group F1 is not necessarily the stabilizer of an arbitrary
vector from V (F1). The set of all vectors of V (n) which have F1 as a stabilizer will be
called here the stratum of F1 in V (n). The stratum of F1 in a certain space V (n) can
be empty. If it is not, then we find it as follows: We consider the stability space V (F1).
This is never empty, it contains at least the trivial vector x = 0. If the stability space
is nontrivial, it is at least of dimension 1. The stratum is then the set of all vectors of
V (F1) with the exception of the trivial vector. If the stability space is of higher dimen-
sion, it may contain subspaces, which are stability spaces of supergroups of F1. To get
the stratum, we have to take all these stability spaces out of the space V (F1). Since these
subspaces are of lower dimensions than V (F1), the stratum of F1 in V (F1) is always a
dense subset of V (F1). We shall use the more customary expression that vector x is a
general vector of the stability space V (F1), as is more usual in the literature. Indeed, the
vectors that do not belong to the stratum can be considered as vectors of special symmetry.

Remark: The original definition of stratum as used, e.g. in the book by Tolédano &
Dmitriev (1996), is the union of all strata as defined here for the set of conjugate sub-
groups and it coincides with our concept of strata for a normal subgroup. If it is necessary
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to use both concepts, we suggest using a capital S in the symbol for the original stratum.

Kernels and epikernels: Let us now replace the set S by a typical carrier space Vα.
If the corresponding R-irep χα(G) is one-dimensional, Ker χα(G) = Hα, then the space
Vα contains only two types of orbits:

(i) The trivial vector x(α) = 0, whose stabilizer under the action of G is the group G
itself.

(ii) If x(α) = xαe
(α), then the stabilizer of this vector is the halving subgroup Hα.

From coset resolution G = Hα ∪ g2Hα we obtain the second vector of the orbit, which is
g2x

(α) = −x(α).
Notice that the set of all vectors with stabilizer Hα is the whole space Vα with the

exception of the trivial vector. This set is the stratum of Hα.

If the dimension of the R-irep is at least two, we have to analyse the structure of the
space Vα as follows:

(i) The stabilizer of the trivial vector x(α) = 0 is again the group G itself.

(ii) The stabilizer of any other vector x(α) is at least the group Hα = Ker D
(α)
R (G).

The index of Hα is now higher than two and we find the orbit in the usual manner. If
every vector of the space has this group for its stabilizer, then we take the trivial vector
out and get the stratum of Hα. The stratum of the group G always consists of the trivial
vector with the exception of the space V1 of invariants. This and the trivial space are the
only spaces which are at the same time strata.

(iii) There may, however, exist vectors of the space Vα, the stabilizers of which are

greater than Hα. Let us assume that such a vector x
(α)
1 exists. The stabilizer of this

vector is called an “epikernel” of the R-irep D
(α)
R (G) and we denote it by Fα1. This group

cannot be normal in G because normal subgroups leave invariant either all vectors or only
the trivial vector in each of the spaces Vα. Epikernels therefore appear as sets of conjugate
subgroups.

The stability space Vα(Fα1) is of the dimension sα(Fα1) < dα. If sα(Fα1) > 1, which
may happen only if dα > 2, there may exist vectors of Vα(Fα1), the stabilizer of which is
greater than Fα1. The dimension of the stability space of this stabilizer is smaller than
sα(Fα1).

The structure of the space Vα can therefore be described as follows: A general vector
of this space has the stabilizer Hα = Ker χα(G). All vectors with exactly this stabilizer
form the stratum of the group Hα. This will be obtained if the trivial vector and vectors
of stability spaces of epikernels are excluded from the space Vα.

Epikernels appear as sets of conjugate subgroups F
(u)
αi , where the superscript u labels

different sets of conjugate subgroups and the index i labels subgroups of the set. Inter-

sections core F (u)
α =

⋂
i F

(u)
αi = Hα of all conjugate epikernels always result in the kernel.

If one epikernel F
(v)
α1 is a subgroup of another epikernel F

(u)
α1 , then the stability space

Vα(F
(u)
α1 ) is a subspace of the stability space Vα(F

(v)
α1 ). The stratum of each epikernel is

therefore obtained by excluding from its stability space the trivial vector and stability
spaces of all epikernels which are subgroups of this epikernel.

The lattice of normal subgroups: The intersection and union of normal subgroups are
again normal subgroups. From this it follows that normal subgroups form a sublattice
LN(G) of the whole lattice L(G). Among normal subgroups we distinguish those which
are kernels of ireps. Hence we have a set of normal subgroups Hα which can be labelled
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by the same labels as the ireps. One normal subgroup can be simultaneously the kernel of
more than one irep. These kernels have the property that they generate the whole lattice
LN(G) by intersections. In other words, each normal subgroup is either a kernel of one
or of more ireps, or it is some intersection of such kernels. In the second case, the kernel
may be generally obtained in several ways as the intersection of kernels of ireps.

The whole lattice: Epikernels play the same role with reference to the whole lattice
as kernels do with reference to the lattice of normal subgroups. Namely, every subgroup
is either an epikernel of some irep or an intersection of epikernels. In this statement,
the word epikernel also includes kernel, which is a special case of an epikernel. Let us
also mention without proof that an intersection of epikernels of the same irep χα(G) is
again an epikernel of this irep. Hence, if a subgroup is not an epikernel, it must be an
intersection of epikernels belonging to different ireps.

If the subgroup is an intersection of kernels or epikernels of ireps, it is suitable when
considering phase transitions to consider all such possible intersections which have the
property that all kernels or epikernels in this intersection are necessary to get the desired
subgroup. In other words, if some group can be excluded from the intersection with-
out changing it, then this group should be excluded. We shall say that the intersection
F1 =

⋂
α Fα1 is a true intersection if omission of any of Fα1 results in a supergroup of F1.

Remark: We consider it appropriate to make the following remark of historical and
terminological character. The term epikernel was introduced by Ascher (1977) [see also
Kobayashi & Ascher (1977)] in connection with his study of the direct and inverse Landau
problem. Unfortunately, the terms little group or isotropy group crept into the literature
instead of it. In our opinion, this is taking jargon too far. A little linguistic analysis seems
not out of place here. The older terms little group or isotropy group are now frequently
replaced by the term stabilizer. The term was introduced in connection with the group
action on any set. The stabilizer of a point of the set is then that subgroup which contains
all those elements of the group which leave the point invariant. In this sense, an epikernel

of an irep D
(α)
R (G) is a stabilizer (little group or isotropy group) of a certain vector of the

carrier space Vα under the action of the group G (it is in no way the stabilizer of its irep).
In addition, the term little group (isotropy group) of an irep has its own meaning in the
theory of representations of space groups, which is a quite different story.

The fine structure of a typical linear orbit: We shall consider now again the
typical stability space Vo(F1) of a subgroup F1 of the group G. This space is a direct sum
of the stability spaces Vα(F1) of the group F1 in individual typical carrier spaces Vα. We

denote by Fα1 the stabilizer of a general vector x
(α)
11 ∈ Vα(F1). The stability space Vα(F1)

is identical with the stability space Vα(Fα1) and all stabilizers Fα1 contain the group F1.
We perform the coset resolution

G = Fα1 ∪ g
(α)
2 Fα1 ∪ . . . ∪ g(α)

pα
Fα1

and the more detailed

G = N
(1)
G (Fα1) ∪ t

(α)
2 N

(1)
G (Fα1) ∪ . . . ∪ t(α)

qα
N

(1)
G (Fα1)

and
N

(1)
G (Fα1) = Fα1 ∪ s

(α)
2 Fα1 ∪ . . . ∪ s(α)

rα
Fα1,

which combine into
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G = Fα1 ∪ s
(α)
2 Fα1 ∪ . . . s(α)

rα
Fα1∪

t
(α)
2 Fα1 ∪ t

(α)
2 s

(α)
2 Fα1 ∪ . . . t

(α)
2 s(α)

rα
Fα1∪

................................................

t(α)
qα

Fα1 ∪ t(α)
qα

s
(α)
2 Fα1 ∪ . . . t(α)

qα
s(α)

rα
Fα1

to obtain the orbit of vector x
(α)
11 ∈ Vα(Fα1) = Vα(F1). This orbit contains pα = qαrα

vectors x
(α)
ij = t

(α)
i s

(α)
j x

(α)
11 ∈ Vα(Fαi) and splits into qα subsets labelled by indices from

the set i = 1, 2, . . . , qα, and each of these subsets contains rα vectors x
(α)
ij with fixed index

i and index j = 1, 2, . . . , rα. The vectors with the same i have the same stabilizer Fαi =

g
(α)
i Fα1g

(α)−1
i . The numbers qα and rα are indices of subgroups: qα = [G : N

(1)
G (Fα1)],

rα = [N
(1)
G (Fα1) : Fα1] and pα = qαrα = [G : Fα1].

A vector x11 of the typical stability space Vo(F1) of the subgroup F1 generates an
orbit of p = qr vectors xij = tisjx11 with stabilizers Fi, where p = [G : F1] = qr, where

q = [G : N
(1)
G (F1)] and r = [N

(1)
G (F1) : F1]. This vector splits into components x

(α)
11 in

the typical irreducible subspaces Vα. Each of these components has its own stabilizer

Fα1 ⊇ F1. Vectors xij = tisjx11 of the orbit also split into components x
(α)
ij . While all

vectors xij of the typical orbit are distinct, the components x
(α)
ij are also distinct only if

Fα1 = F1. Notice that this means that these components are distinct only if F1 is an

epikernel of the irep D
(α)
R (G). On the other hand, if Fα1 ⊃ F1, the number pα of distinct

components is a divisor of the total number p of vectors of the orbit; it is p : pα = [Fα1 : F1].

If we label the components x
(α)
ij by the original labels ij, then certain groups of these

labels denote the same component. To label them uniquely, we use the coset resolutions

associated with the stabilizer Fα1 which results in a certain unique labelling x
(α)
iαjα

. Each
label iαjα then corresponds to kα = p : pα labels ij. The set of vectors

xij = (. . . ,x
(α)
iαjα

, . . . ,x
(β)
iβjβ

, . . .)

will be called the typical linear orbit and its representation in terms of components in
irreducible typical subspaces will be referred to as the fine structure of the typical linear
orbit. Tables of these structures (under the less precise name fine domain structures) were
published a long time ago (Kopský, 1982).

Examples: We shall illustrate these theoretical results using, as an example of a parent
group, the point group 4z/mzmxmxy (D4hz). In Table B1 are listed all subgroups of this
group and for each of the subgroups its typical stability space in terms of nonvanishing
typical variables is given. If such a vector is framed, then the corresponding subgroup is
an epikernel (or kernel) of that irep to which the covariant belongs.

In Table B2 are shown the fine structures of typical orbits for a few symmetry descents
from the same parent group and some cases of descents from other parent groups. The
descent D6 ⇓ C3 is exomorphic (cf. the section following these examples) with the descent
D4hz ⇓ C4z and the descent D4z ⇓ (C2x, C2y) with the descent D4hz ⇓ (C2hx, C2hy). The
advantage of typical variables is clear if we recall that tables of tensorial covariants assign
to each of these variables all covariant tensor components up to fourth order (and if
extension to higher orders is necessary, we know how to do this).
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Table B1: Epikernels and stability spaces
for the group D4hz − 4z/mzmxmxy

C4hz 4z/mz x+
2

D2h mxmymz x+
3

D̂2hz mxymxymz x+
4

D4z 4z2x2xy x−1

C4vz 4zmxmxy x−2

D2dz 4z2xmxy x−3

D̂2dz 4zmx2xy x−4

C2hz 2z/mz x+
2 , x+

3 , x+
4

C4z 4z x+
2 , x−1 , x−2

D2 2x2y2z x+
3 , x−1 , x−3

D̂2z 2xy2xy2z x+
4 , x−1 , x−4

S4z 4z x+
2 , x−3 , x−4

C2vz mxmy2z x−2 , x+
3 , x−4

Ĉ2vz mxymxy2z x−2 , x−3 , x+
4

C2z 2z x+
2 , x+

3 , x+
4 , x−1 , x−2 , x−3 , x−4

C2hx 2x/mx x+
3 (x+

1 , 0)

C2hy 2y/my x+
3 (0, x+

1 )

C2hxy 2xy/mxy x+
4 (x+

1 , x+
1 )

C2hxy 2xy/mxy x+
4 (x+

1 ,−x+
1 )

Ci 1 x+
2 , x+

3 , x+
4 (x+

1 , y+
1 )
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C2vx 2xmymz x+
3 (x−

1 , 0)

C2vy mx2ymz x+
3 (0, x−

1 )

C2vxy mxy2xymz x+
4 (x−

1 , x−
1 )

C2vxy 2xymxymz x+
4 (x−

1 ,−x−
1 )

Csz mz x+
2 , x+

3 , x+
4 (x−

1 , y−
1 )

C2x 2x x+
3 , x−1 , x−3 (x+

1 , 0) (x−
1 , 0)

C2y 2y x+
3 , x−1 , x−3 (0, x+

1 ) (0, x−
1 )

C2xy 2xy x+
4 , x−1 , x−4 (x+

1 , x+
1 ) (x−

1 , x−
1 )

C2xy 2xy x+
4 , x−1 , x−4 (x+

1 ,−x+
1 ) (x−

1 ,−x−
1 )

Csx mx x+
3 , x−2 , x−4 (x+

1 , 0) (0, x−
1 )

Csy my x+
3 , x−2 , x−4 (0, x+

1 ) (x−
1 , 0)

Csxy mxy x+
4 , x−2 , x−3 (x+

1 , x+
1 ) (x−

1 ,−x−
1 )

Csxy mxy x+
4 , x−2 , x−3 (x+

1 ,−x+
1 ) (x−

1 , x−
1 )

C1 1 x+
2 , x+

3 , x+
4 , x−1 , x−2 , x−3 , x−4 (x+

1 , y+
1 ) (x−

1 , y−
1 )

Table B2: Examples of the fine structure of typical orbits

Symmetry descent: D4hz ⇓ D2h

D4hz D2h 4zD2h

D2h x+
3 −x+

3

Symmetry descent: D4hz ⇓ C4z

D4hz C4z iC4z 2xC4z mxC4z

C4hz x+
2 x+

2 −x+
2 −x+

2

D4z x−1 −x−1 x−1 −x−1
C4vz x−2 −x−2 −x−2 x−2
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Symmetry descent: D4hz ⇓ (C2hx, C2hy)

First normalizer ND4hz
(C2hx) = ND4hz

(C2hy) = D2h = normal subgroup

D4hz D2h 4zD2h

C2hx 2zC2hx 4zC2hx 4−1
z C2hx

C2hx C2hy

D2h x+
3 x+

3 −x+
3 −x+

3

C2hi (x+
1 , 0) (−x+

1 , 0) (0, x+
1 ) (0,−x+

1 )

Symmetry descent: D4hz ⇓ Csz

D4hz Csz 4zCsz 2zCsz 4−1
z Csz

C4hz x+
2 x+

2 x+
2 x+

2

D2h x+
3 −x+

3 x+
3 −x+

3

D̂2hz x+
4 −x+

4 x+
4 −x+

4

Csz (x−
1 , y−

1 ) (−y−
1 , x−

1 ) (−x−
1 ,−y−

1 ) (y−
1 ,−x−

1 )

2xCsz 2xyCsz 2yCsz 2xyCsz

C4hz −x+
2 −x+

2 −x+
2 −x+

2

D2h x+
3 −x+

3 x+
3 −x+

3

D̂2hz −x+
4 x+

4 −x+
4 x+

4

Csz (x−
1 ,−y−

1 ) (y−
1 , x−

1 ) (−x−
1 , y−

1 ) (−y−
1 ,−x−

1 )

Symmetry descent: D4hz ⇓ (C2x, C2y)

First normalizer ND4hz
(C2x) = ND4hz

(C2y) = D2h = normal subgroup

D4hz D2h 4zD2h

C2x iC2x 2zC2x mzC2x 4zC2x 4zC2x 4−1
z C2x 4

−1
z C2x

C2x C2y

D2h x+
3 x+

3 x+
3 x+

3 −x+
3 −x+

3 −x+
3 −x+

3

D4 x−1 −x−1 x−1 −x−1 x−1 −x−1 x−1 −x−1
D2dz x−3 −x−3 x−3 −x−3 −x−3 x−3 −x−3 x−3
C2hi (x+

1 , 0) (x+
1 , 0) (−x+

1 , 0) (−x+
1 , 0) (0, x+

1 ) (0, x+
1 ) (0,−x+

1 ) (0,−x+
1 )

C2vi (x−
1 , 0) (−x−

1 , 0) (−x−
1 , 0) (x−

1 , 0) (0, x−
1 ) (0,−x−

1 ) (0,−x−
1 ) (0, x−

1 )
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Symmetry descent: D4 ⇓ (C2x, C2y)

First normalizer ND4z(C2x) = ND4z(C2y) = D2 = normal subgroup

D4z D2 4zD2

C2x 2zC2x 4zC2x 4−1
z C2x

C2x C2y

D2 x3 x3 −x3 −x3

C2i (x1, 0) (−x1, 0) (0, x1) (0,−x1)

Symmetry descent D6 ⇓ C3

D6z C3z 2zC3z 2xC3z 2yC3z

C6 x2 x2 −x2 −x2

D3x x3 −x3 x3 −x3

D3y x4 −x4 −x4 x4

Symmetry descent: O ⇓ (D3p, D3q, D3r, D3s)

First normalizers: NO(D3p) = D3p, NO(D3q) = D3q, NO(D3r) = D3r, NO(D3s) = D3s = self-normalizers

O D3p 2zD3p 2xD3p 2yD3p

D3p D3q D3r D3s

D3j (x1, x1, x1) (−x1,−x1, x1) (x1,−x1,−x1) (−x1, x1,−x1)

Symmetry descent: Oh ⇓ (D4z, D4x, D4y)

First normalizers: NOh
(D4hz) = D4hz, NOh

(D4hx) = D4hx, NOh
(D4hy) = D4hy = self-normalizers

Oh D4hz 3pD4hz 32
pD4z

D4hz D4hx D4hy

D4z iD4z 3pD4z 3pD4z 32
pD4z 35

pD4z

D4z D4x D4y

O x−1 −x−1 x−1 −x−1 x−1 −x−1
D4j D4hj (x+

3 , 0) (x+
3 , 0) (−ax+

3 , bx+
3 ) (−ax+

3 , bx+
3 ) (−ax+

3 ,−bx+
3 ) (−ax+

3 ,−bx+
3 )

D4j (x−
3 , 0) (−x−

3 , 0) (−ax−
3 , bx−

3 ) (ax−
3 ,−bx−

3 ) (−ax−
3 ,−bx−

3 ) (ax−
3 , bx−

3 )
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Exomorphic symmetry descents: Let us consider two symmetry descents: G ⇓ F1

and G̃ ⇓ F̃1. First we construct the intersections H = core Fi =
⋂

i Fi and H̃ = core F̃i =⋂
i F̃i, which are normal subgroups of G and G̃, respectively.

If the factor groups G/H and G̃/H̃ are isomorphic, then there exist homomorphisms

σ and σ̃, with kernels Ker σ = H , Ker σ̃ = H̃ which map the groups G and G̃ onto the
same group H = σ(G) = σ̃(G̃). If these homomorphisms also map the groups F1 and F̃1

onto the same subgroup F1 = σ(F1) = σ̃(F̃1), then we say that the symmetry descents

(group–subgroup relations) G ⇓ F1 and G̃ ⇓ F̃1 are exomorphic or of the same exomorphic
type.

Diagram of exomorphic relations

H

F1

C1

�G � G̃

�H � H̃

�F1
� F̃1

�
�
�
�

�
�
�
�

�
�

�
�

�
�

�
�

σ σ̃

σ σ̃

σ σ̃

The exomorphism of symmetry descents has powerful consequences:
(i) There exists a one-to-one mapping of ireps α ←→ α̃ of G and G̃ engendered by ireps

of the factor group H. There also exists a one-to-one mapping of cosets giF1 ←→ g̃iF̃i

such that elements of these cosets act in the same way on spaces of engendered ireps.
Indeed, both cosets act in the same way as the element γi of the factor group H.

(ii) From this it follows that the stability spaces, strata and typical orbits have identical
structures.

(iii) In addition, all polynomials in variables which belong to engendered ireps have
the same transformation properties under the action of elements of corresponding cosets.

The concept was introduced by Kopský (1978) for equitranslational phase transitions.
In this context, we can say that the consideration of two exomorphic transitions is based
on the same algebraic relations. In view of this, the classification of symmetry descents
into exomorphic types facilitates systematic investigation. Thus in terms of crystallo-
graphic point groups we find 44 exomorphic types. Among them we find 28 cases where
the subgroup is an epikernel of some irep, and in five cases out of these the subgroup is
simultaneously an epikernel of two ireps. Extending the investigation to magnetic crystal-
lographic point groups, we find another 25 exomorphic types, none of which corresponds
to an epikernel.

The number of distinct descents within classical crystallographic point groups is 212,
within magnetic crystallographic point groups it goes up to 1599. In terms of equitrans-
lational symmetry descents between ordinary or magnetic space groups this number will
go up into the thousands.

52



Domain states in structural phase transitions

The abstract picture outlined above is applicable to structural phase transitions with
symmetry descent, the phenomenological theory of which stems from the work of Landau
(1937). The role of parameters which transform by R-ireps was already recognized in this
work; Landau calls them “races of functions”. The basic idea of the Landau theory is well
known. A physical system of symmetry G, called the parent symmetry, allows only such
states the parameters of which are invariants of G. These are represented in the abstract
picture for point groups by x1 or x+

1 . Deviations from such states are described by param-
eters which transform by non-identity R-ireps of the group G. In the abstract picture
these are described by typical variables, to which, in models of real situations, correspond
some real physical parameters. The typical linear orbits describe, in an abstract manner,
the set of domain states; these are those states of the low symmetry which are equivalent
with reference to the parent symmetry (Janovec, 1972). The models of structural phase
transitions can be developed on different levels of approximation; to describe them we
need a few concepts which are not yet commonly used.

Space and subperiodic groups: It is well known that symmetries of crystals are
described by space groups. There exist 230 types of such groups, which are described
in Vol. A of International Tables for Crystallography (2002). It is useful to extend the
concept of space groups as well as the concept of crystallographic groups in a manner which
will be described below. All groups we shall consider are groups of “isometries” (“Euclidean
motions” is another term in which we should, however, consider mirror reflections as
motions as well). We denote isometries by Seitz symbols {g|t}P , where P is an origin of
Euclidean space E(3), t ∈ V (3) is the translation of this space, g ∈ O(3) is an orthogonal
operator on V (3) and O(3) is the orthogonal group. Any point of X ∈ E(3) can be
expressed as X = P +x, where x ∈ V (3) and the action of isometry on points is expressed
by:

{g|t}PX = {g|t}P (P + x) = P + gx + t.

We shall now introduce a symbol

G = {G, TG, P,uG},
for the group of isometries {g|t}P . This set is a group of isometries if the following
conditions are satisfied: elements g constitute a point group G, TG is a G-invariant group
of translations t, and uG(g) : G −→ V (3) is a function which assigns to each element g a
vector uG(g) and which satisfies the following conditions:

w(g, h) = uG(g) + guG(h) − uG(gh) ∈ TG.

The function satisfying such conditions is called the system of nonprimitive translations and
the function w(g, h) is called the factor system.

A rigorous mathematical approach to the theory of Euclidean groups has been developed
in two exacting papers by Ascher & Janner (1965, 1968/69) in terms of “cohomology
groups”. The authors thank Professor Procházka from the Mathematical Faculty of
Charles University in Prague who deciphered this algebraic theory for us. It applies
not only to space groups in their usual meaning but to all Euclidean groups. Combin-
ing algebraic background with geometrical interpretation and with the use of groups in
problems which go beyond classical crystallography, we found that a slight amendment of
the concepts of “crystallographic” and of “space groups” is desirable. These amendments
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were discussed at Commissions of IUCr and publicly proposed at the ECM 9 in Prague
(1998). We suggested the following use of terms (for details see Kopský, 2001a):

(i) A point group G is crystallographic if it leaves a certain discrete three-dimensional
translation subgroup (crystallographic lattice) TG invariant.

(ii) A Euclidean group G is crystallographic if G is crystallographic.
(iii) A group G is a space group if the translation subgroup TG spans the whole space

V (3).
(iv) A group G is a layer or rod group, if the translation subgroup TG spans a two-

dimensional or one-dimensional subspace of V (3) and it is a site point group if TG = {0}.
This terminology enables us to develop a rigorous approach to the theory of Landau-

type phase transitions and of the respective domain walls in the continuous approximation.
Indeed, what is the symmetry of a crystal in the continuous approximation? This is a
group G with point group G and translation subgroup TG = V (3). In view of this,
the system of nonprimitive translations can be chosen as trivial, so that the group is
denoted by G = {G, V (3), P,uG = 0}. This group has the property that the symmetry
at each point X of the space is GX . We suggest using the name point-like space groups
for such groups. Analogously, we define point-like layer and rod groups, for which TG =
V (2) or V (1), respectively.

Although this terminology sounds unusual, it is more natural than that generally
adopted. The main property of crystals is not their “discreteness”. All materials are
discrete in the same sense. The main property of crystals is their three-dimensional
periodicity and its invariance under the point groups. On the other hand, what is the
most natural term for groups the translation subgroup of which is the whole space V (3)?
We believe that “space groups” is the most appropriate. In such terminology, the usual
space groups are now the crystallographic space groups and, on the other hand, the
groups with continuous translation subgroup are crystallographic once their point group
is crystallographic. Using this terminology, we can develop the models of structural phase
transitions and of domains on different levels of approximation:

1. Microscopic (full-scale) level: In this case we consider the structure described either
by atomic positions or by density functions and the symmetries and their descents G ⇓ F1

in terms of space groups. This consideration is always the most rigorous; it is quite
necessary in the case of non-ferroic transitions, where the point class of the symmetry
group does not change. Indeed, at the level of the continuous approximation (cf. the next
paragraph) no symmetry change will have a meaning for a non-ferroic transition. The
approach certainly also applies in the case of ferroic transitions. The “Scanning Tables”
of International Tables for Crystallography Vol. E, Subperiodic Groups (Kopský & Litvin,
2002) are designed for use when considering domain walls at this level.

2. Continuous approximation: The material is treated as an infinite homogeneous and
anisotropic medium and its symmetry is the point-like space group. The microscopic
structure is neglected and considerations are confined only to morphic effects, i.e. to the
change of tensor properties, to the tensor distinction of domain states and to the character
of tensors across the domain wall.

This approximation can be used for considering ferroic phase transitions. We should
distinguish here two cases:

2.1. Non-equitranslational transitions: In this case we neglect all parameters associated
with those ireps of the actual space group which correspond to non-homogeneous modes
(wavevectors k 
= 0).

2.2. Equitranslational phase transitions: All ireps associated with the transition are
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taken into account but microscopic parameters (displacements of atoms) are ignored.

The concept of transition parameter(s) (generally plural) is of basic importance in
phase-transition theory. We should, however, distinguish between transition parameters
which appear in the Landau model and transition parameters which are described by mor-
phic effects, i.e. by the change of tensor properties. The latter are used in the continuous
model.

General case of space structures: Structural phase transitions are characterized
by symmetry descents: G ⇓ H or G ⇓ Fi, where G is the parent space group and
the low-symmetry space group is either normal, denoted here as H, or there exists a set
of equivalent low symmetries Fi which are conjugate subgroups of G. In the analysis of
domain states we first use coset resolution

G = F1 ∪ {g2|uG(g2)}PF1 ∪ . . . {gp|uG(gp)}PF1∪
{e|t2 + uG(g2)}PF1 ∪ {g2|t2 + uG(g2)}PF1 ∪ . . . {gp|t2 + uG(gp)}PF1∪

...................................................................

{e|tq + uG(g2)}PF1 ∪ {g2|tq + uG(g2)}PF1 ∪ . . . {gp|tq + uG(gp)}PF1

of the space (parent) symmetry G = {G, TG, P,uG(g)}P of the original (parent) state S
into left cosets of the subgroup F1, which is the symmetry of one of the domain states S1.

Applying the left coset representatives {gi|tj + uG(gi)}P to the first domain state S1

we obtain the set of equivalent low-symmetry states:

S1 S2 . . . Sp

S1(t2) S2(t2) . . . Sp(t2)
.................................

S1(tq) S2(tq) . . . Sp(tq)

where Si(tj) = {gi|tj + uG(gi)}PS1. The total number of domain states pq = [G : H] =
[G : H ][TG : TH ] splits into p = [G : H ] sets of orientation states, as representatives of
which we may use the states

S1, S2, . . ., Sp.

To each set there belong q = [TG : TF1 ] translational states

Si, Si(t2), . . ., Si(tq).

Domain states Si(tj), i = 1, 2, . . . , p, j = 1, 2, . . . , q in this consideration represent the
“same” structure in p different orientations and q different locations. Mode analysis is
the tool needed to determine domain states with reference to the parent state S. Domains
are regions in space occupied by different domain states, and to analyse a “multidomain”
sample one has to take into account the geometry of the domain structure and the struc-
ture of the domain walls (interfaces). Such an analysis begins with the determination of
pairs of domain states; representatives of such pairs are in a one-to-one correspondence
with double cosets (Janovec, 1972).

Enantiomorphism: If the parent group G does not contain improper rotations (rotations

or screw rotations combined with space inversion), then there exists a mirror image Ŝ

of the original structure; the structures S and Ŝ are known as mutually enantiomorphic

55



structures. The symmetry of the structure Ŝ is the group Ĝ, an enantiomorphic partner
of G if G belongs to one of the 11 pairs of enantiomorphic space-group types; otherwise
Ĝ = G. The low-symmetry groups Fα,i then also do not contain improper rotations and

there exists a phase transition from the structure Ŝ of symmetry Ĝ to the set of structures
Ŝij with symmetries F̂α,i.

If the parent group G contains improper rotations, then the structure S is mirror-
symmetric (some rotations combined with a mirror are its symmetry operations). If the
low-symmetry groups Fα,i also contain improper rotations (if one of them does, then all
of them do), then the domain states Sij are also mirror-symmetric.

If the parent group G contains improper rotations while the low-symmetry groups Fα,i

do not (again, if one of them does not, then none does), then the set of domain states
Sij splits into two subsets; the domain states within each of these subsets differ only by
orientation and location, while all domain states of one of the sets are mirror images
(subject to rotation and translation) of domain states of the other set.

Geometric description of domain states. In the theory of displacive phase tran-
sitions we can describe domain states as follows. We assume that we know the original
parent structure S. Various modes of motion of this structure are classified by ireps χα(G)
of the parent group G. Quite generally, the mode analysis consists of the determination
of carrier spaces Vαa, belonging to these ireps, in terms of atomic displacements. As long
as the temperature and hydrostatic pressure remain in the region of the parent phase,
the displacements over the time average vanish. Only those invariants are allowed which
account for possible changes of lattice parameters and motion of atoms without leaving
their Wyckoff positions. The space-group type and the structure type do not change.

At the transition point on a (T, p) line of a phase diagram, some of the modes are
frozen so that the atoms are displaced from their original positions, which leads to the
change of the structure type and of the space-group type. If the low symmetry is the
subgroup F1 of G, the frozen displacements are those which belong to stability spaces
Vαa(F1). These stability spaces are copies of the typical stability spaces Vα(F1) and the
number of spaces Vαa(F1) is equal to the number of modes which transform by the irep

D
(α)
R (G). We can use the same coset resolution as for the typical orbit to obtain the orbit

of vectors
xij = (. . . ,x

(α)
a,iαjα

, . . . ,x
(β)
b,iβjβ

, . . .),

each of which describes one of the equivalent domain states Sij of the low symmetry. Here,
equivalence means that whatever pair of domain states we choose, there exists an element
of the parent group G which sends one of them to the other (in fact, it is always the whole
coset of elements). Here, indices i, j are related to those used in labelling the vectors of
the typical orbit.

Primary and secondary parameters: In the Landau theory we assume that one of
the modes becomes unstable at the transition line and is therefore frozen. Parameters of
this mode are usually described by letters η. In our consideration this will be the com-

ponents of a certain vector x
(α)
o,11 ∈ Vαo. This parameter is usually called the primary order

parameter (or primary transition parameter). Since the low symmetry F1 is the stabilizer
of this vector, all domain states differ in this parameter. In this case, the set of domain
states is called full in this parameter. The onset of this parameter is to be considered as

the cause of the symmetry descent. Since the parameter belongs to a certain irep D
(α)
R (G),

the low-symmetry group has to be an epikernel of this irep.
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The descent of symmetry leads generally to an onset of other parameters. For the time
being we simply assume that such parameters appear because they are allowed. These
parameters are called the secondary parameters and three different types of them may
exist:

(i) If there exist other modes x
(α)
a,11 which belong to the same irep as the primary

parameter, they should also freeze in the low-symmetry states.

As we have seen in the consideration of the typical orbit, in general parameters x
(β)
b,11

belonging to other ireps should also onset. There are two possibilities:

(ii) The low-symmetry group is simultaneously an epikernel of another irep D
(β)
R (G)

and hence it is the stabilizer of some vectors x
(β)
b,11.

(iii) The stability space of the low symmetry is nontrivial in the typical space Vβ(F1)
and hence in all spaces Vβb(F1), but the stabilizer of a general vector of such a subspace
is a group Fβ1 which contains F1.

The set of domain states is full in secondary parameters in cases (i) and (ii). In case
(iii), several domain states correspond to one value of the parameter. We say that the set
of domain states is partial in this parameter. The names “full” and “partial” for the set
of domain states as well as the term “faint” for coupling of secondary parameters with
the transition parameter are borrowed from the work of Aizu (1969, 1970, 1972, 1979).

Interactions: Primary parameter. In the consideration of the Landau potential we
should generally write down invariant polynomials in terms of all transition parameters.
Since the ireps which are used are orthogonal and irreducible over the field of real numbers,
the form of an invariant in every parameter x(α) has the form

∑dα
i=1 x2

αi. In the Landau
potential we assume that the constant at this term for the primary transition parameter
x(α)

o is proportional to the difference (T − Tc), where Tc is the transition temperature.
The remaining terms have the form of polynomials which can be found in the integrity
basis of invariants.

Faint interactions: The secondary parameters x(βb) transform like x(β), which forms an

invariant
∑dβ

j=1 x2
βj . This means that invariants of the form

dβ∑
j=1

xβb,jpβj(x
α
o )

also exist, where pβ,j(x
α
o ) transform like xβj , so that they are components of a polynomial

D
(β)
R (G)-covariant in components of a D

(α)
R (G)-covariant xα

o . The components of these
covariants are proportional to the forces which are exerted by primary parameter on the
secondary parameters. In continuous phase transitions, the value of primary parameter
slowly grows from zero. The forces acting on secondary parameters behave like powers
of the primary parameter and are therefore smaller the higher the degree of the lowest
polynomial pβ,j(x

α
o ). Aizu uses the name “faintness index” for this power and we shall

accordingly call the interactions of the primary parameter with secondary parameters the
“faint interactions”. The lowest-degree polynomials are contained in the extended integrity
bases in terms of the primary parameter. According to the representation generating
theorem, faint interactions always exist and determine the forces exerted by the primary
parameter which bring the secondary parameters to life (Kopský 1979f).

A secondary parameter xα
a may also belong to the same irep as the primary parameter

xα
o . In this case, there exists an invariant of the form

∑
i xαo,ixαa,i. It is always possible
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to eliminate such invariants by a diagonalization procedure and it is also advisable to do
so. Indeed, the existence of such interactions indicates that xα

o is not an “eigenmode”. In
other words, the index of faintness should never be 1. Polynomials pα,i(x

α
a ) always exist

and the ones of lowest order couple with the primary parameter xα into faint interac-
tions

∑
i xαo,ipα,i(x

α
a ) (cf. the example of two approaches to the ferrielectric behaviour of

ammonium sulfate below).
Remark: In application to ferroelectrics and ferroelastics, the terms proper, improper

(Dvořák, 1971, 1972; Levanyuk & Sannikov, 1970, 1974) and pseudoproper (Petzelt, Grigas
& Mayerová, 1974) are widely used. The first means that polarization or deformation is
the primary parameter, in the second case it is the secondary parameter, the third case
applies if polarization or deformation is a secondary parameter transforming in the same
way as the primary parameter. With reference to microscopic theory, this terminology
seems to have rather historical value. Thus in the example of ammonium sulfate, polariza-
tion is neither primary nor secondary parameter. In this case, the primary parameter is a
certain linear combination of modes which carries part of the polarization, the secondary
parameter is another combination which carries the other part. At the same time, both
components transform by the same irep. Let us recall the historical experiment on gadolin-
ium molybdate (Cross, Fousková & Cummins, 1968) where a ferroelectric phase transition
was not accompanied by a pronounced peak in permittivity, which would be predicted
by phenomenological theory with polarization as a transition parameter. Cochran (1971)
introduced the concept of the “soft mode”, which is identical with primary order parame-
ter. This mode is not necessarily homogeneous, so it cannot be in general identified with
any macroscopic parameter.

Switching interactions: Parameters which transform by ireps of space groups which
correspond to a wavevector k = 0 also interact with external fields. These interactions
with an electric field can be expressed as invariants of the form

dα∑
i=1

xαipαi(E),

while the interactions with an external mechanical stress are expressed as

dα∑
i=1

xαipαi(σ).

Remark 1: It nearly became traditional to denote the components of the primary
transition parameter by ηi; this corresponds to the subscript “o” in our treatment.

Remark 2: You can find switching interactions with electric field in tables for every
parameter. The fact that an electric field can, in principle, always switch the domain
states while mechanical forces can always switch domain states associated with tensors
of even parity is again a consequence of the representation generating theorem (Kopský,
2001c). On the basis of this theorem combined with parity reasoning we can find analogous
laws for the switching of domain states in cases when magnetic properties are involved.

Many-parametric structural phase transitions: The consideration above assumes that the
transition parameter belongs to a certain irep of the parent group and hence that the low-
symmetry group is a kernel or epikernel of this irep. We shall say that such transitions
are single parametric, which means that they are associated with a single irep. There
exist, however, symmetry descents to subgroups which are neither kernels nor epikernels
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of ireps. On the other hand, every normal subgroup is either a kernel or an intersection
of kernels and every other subgroup is either an epikernel or an intersection of epikernels.
The low symmetry can therefore always be attained by simultaneous onset of two or more
parameters. The model of such transitions was proposed by Holakovský (1973) under the
name triggered phase transitions. Other models are considered in Section 2.5 of the book
by Kociński (1990) and in Section 4.4 of the book by Tolédano & Dmitriev (1996).

The direct and inverse Landau problem. There are two possible approaches to a
group-theoretical part of an analysis of feasible structural phase transitions with a certain
parent symmetry G, which were formulated by Kobayashi & Ascher (1977):

(i) The direct problem: Assuming that we know the class χα(G) of ireps to which the
primary transition parameter belongs (i.e. according to which it transforms), find possible
low-symmetry groups Fα. The term epikernel was actually introduced in connection with
this formulation.

(ii) The inverse problem: Assuming that we know the low-symmetry group F , find the
ireps that are candidates for being the ireps of the primary transition parameter. In other
words, find ireps of which the group is an epikernel.

The subduction and chain subduction criteria: Under these names criteria were intro-
duced (Birman, 1966; Goldrich & Birman, 1968; Jaric̀, 1981, 1982, 1983) which actually
represent auxiliary procedures for determination of epikernels of ireps and hence for the
solution of the direct problem. Hatch & Stokes (1986) and Stokes & Hatch (1988), with
the use of a mainframe computer, determined epikernels (using the name “isotropy sub-
groups”) of all those ireps of the space groups which correspond to points of special
symmetry in the Brillouin zone. Thus they solved the direct Landau problem for a large
class of feasible transitions.

The Ker-core criterion: To solve the inverse Landau problem in a certain particular case,
one can use the Ker-core criterion by Ascher (1977). The use of this criterion facilitates the
solution of the inverse problem, i.e. the search for ireps to which the transition parameter
may belong including the cases when the transition is many-parametric. In application of
this criterion we find first the intersection of the set of conjugate low-symmetry groups:
core Fi =

⋃
i Fi = H, which is the normal subgroup of the parent group G, and then we

find the factor group G/H. If this group contains faithful R-ireps, then Fi are epikernels
of engendered R-ireps of the original group G. If the only faithful representations of
the factor group are reducible, then groups Fi are intersections of epikernels of those
R-ireps which are contained in the reducible representation of G engendered by faithful
representation of the factor group.

It is our opinion that these approaches will soon be replaced by electronic databases
and software, which will readily answer both the direct and inverse Landau problem for
structural phase transitions associated with special points of the Brillouin zone, like the
present software does for ferroic transitions. The current situation in the topic of phase
transitions is similar to early studies of crystal structures. At the time when the first
tables of space groups appeared [references to International Tables which are based on
group theory, starting with the pioneering book by Niggli (1919), are listed at the end of
bibliography], only a few space symmetries were represented by known structures. The
number of known structural phase transitions grows [see the last report by Tomaszewski
(1992)] which justifies systematic research, especially in the case of ferroic transitions in
connection with the development of so-called “domain engineering”. The aim of such
research is not only to save the tedious work in interpretation of experimental results; its
importance also lies in setting standards by which such results may be expressed.
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Tensor calculus of domain states in ferroic phase transitions

In our consideration of ferroic phase transitions we adopt the following philosophy: “The
full investigation of a structural phase transition requires mode analysis, which may differ
from one material to another even if the symmetry groups of parent and low-symmetry
phase are identical. Changes of material properties in ferroic transitions and the rela-
tionship between these properties in different domains can, however, be investigated on
the grounds of group–subgroup relations in complete independence of specific materials.”
In other words, our analysis in this section and the results in the accompanying software
do not depend on particular microscopic models. The development of tensor calculus for
domain states is a prerequisite in a strategy for a general investigation of multidomain
materials which may play an important role in the development of “domain engineer-
ing”. As usual, such investigations supply only qualitative results and cannot predict the
magnitude of effects.

The consideration of changes of material properties in ferroic phase transitions is based
on the same scheme as the analysis of structural changes with mode coordinates replaced
by tensor components. This approach is useful because it provides important informa-
tion, but it cannot replace the mode analysis even in the case of equitranslational phase
transitions. Two important points of this analysis will now be briefly scrutinized.

Principal and secondary tensor parameters. The first point concerns the fact
that material properties cannot be considered as the order parameters in the Landau
sense, i.e. as parameters which appear in the Landau potential. Changes of these prop-
erties at ferroic transitions are described as morphic effects. Spontaneous polarization
and strain should also be considered as morphic effects, although they were and still are
considered as order parameters in proper ferroelectric and ferroelastic phase transitions.
This is, however, possible only if they are so strongly connected with modes that their use
does not lead to any confusion. In this connection we recall the case of the ferrielectric
behaviour of ammonium sulfate (Unruh, 1970). Two models were proposed to explain
this behaviour (Kopský, 1976c; Dvořák & Ishibashi, 1976). Two components of polariza-
tion, each connected with its own mode, were introduced in both cases. This example
is very illustrative. On symmetry grounds there is no reason to split polarization into
two components. The ferrielectric behaviour can, however, be explained in analogy with
well known ferrimagnetic models if we assume the existence of two modes, each of which
carries part of the polarization. In the model by Dvořák & Ishibashi (1976) one mode
is considered as the primary parameter. The other mode has the same transformation
properties and therefore there exist bilinear interactions between the two modes which
lead to a shift of the originally assumed transition temperature. The existence of bilinear
interactions, however, implies that the first mode is not an “eigenmode”. In the model by
Kopský (1976c), linear combination of the two modes such that the bilinear interaction is
eliminated is assumed to be the primary order parameter. Both models predict the same
temperature dependence of polarization but the second does not need introduction of the
shift of transition temperature. This example shows clearly that on the level of morphic
effects we cannot use the concept of the “primary order parameter” unless specific con-
ditions are met. For example, if there is only one mode which carries polarization and
this mode is the primary parameter, then polarization can also be safely considered as
the primary parameter.
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It is, however, possible to apply to morphic effects the same principle of “cause −→
consequence” as to the modes. The relationship between symmetry and allowed param-
eters is twofold. If we observe an onset of a new material property, not allowed by the
parent group, with the change of temperature T and hydrostatic pressure p, we can
certainly conclude that a ferroic transition took place, leading to symmetry descent and
consequently to the appearance of other new properties allowed by the ferroic group. We
should, of course, remember that behind this change there lies a deeper “cause” in the
structural changes which are beyond the macroscopic observation.

If an experimentalist observes an onset of some tensor parameters which are not allowed
by the parent symmetry G, he can certainly conclude that a transition with symmetry
descent to some subgroup F1 took place. On the other hand, such symmetry descent is
accompanied by an onset of all those parameters which are covariant components allowed
by symmetry F1 while forbidden by G. Some of these parameters themselves may, how-
ever, result in higher symmetry then F1 though lower than G.

In tables analogous to Table B1 which, in different form, were also published a long time
ago (Kopský, 1982, 1983), we clearly distinguish, in terms of typical variables, parameters
which lead to a subgroup F1 from those which are consequently allowed. Those variables
which are framed represent the cause of the transition to an epikernel. In some cases
there may exist two types of framed variables belonging to different R-ireps in the case
of point groups. If a subgroup is not an epikernel to any R-irep, then it can be expressed
as a “true intersection of epikernels”, perhaps in several ways. In this case, we should
consider simultaneously the parameters of these epikernels as the cause of the descent.
The remaining parameters are then the consequence of the descent. Tables of tensorial
covariants enable us to interpret these variables in terms of tensor parameters. Although
we use here the term tensor parameter in the singular, we should realize that they may
contain several components.

We shall say that a tensor parameter is a principal tensor parameter of a symmetry
descent G ⇓ F1 if it is the cause of the descent; in this case F1 is the stabilizer of a
tensor corresponding to these parameters. Other parameters will be called the secondary
tensor parameters. There are infinitely many principal tensor parameters, but we are
limited by experimental facilities. Even with tensors, considered in this work, there are
usually several principal tensor parameters of different tensor character. In cases where
the low-symmetry group is not an epikernel but an intersection of epikernels, some of
the parameters may have different tensor character to the others. The principal tensor
parameters are in a certain sense analogous to the primary order parameter and secondary
tensor parameters are analogous to faint variables. One of the manifestations of the
difference between the consideration of structural changes and of morphic effects is the
fact that we can consider several tensor parameters as the principal ones, while there is
always one primary order parameter.

Tensor parameters of a symmetry descent are certain covariant components of a tensor.
To see the change of the tensor in its Cartesian form in the transition, we should use the
conversion relations. Detailed analysis of particular cases can be performed with use of
our tables and of conversion relations. There exist cases which might seem strange at first
sight. Thus it may happen that part of a certain Cartesian tensor component appears as
the principal parameter while another contribution to the same component is a secondary
parameter, so that the structure of domain states is full in one of these contributions and
partial in the other part. Let us finally observe that the invariant linear combinations
of Cartesian components also represent the independent parameters of tensors of a given
type for a given symmetry.
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Continuous model of ferroic transitions. In the case of ferroic phase transitions we
consider the crystal as a homogeneous anisotropic continuum. The appropriate symmetry
is, in this case, a certain point-like space group V G whose isometries are all {g|t}P with
g ∈ G and t ∈ V (3). In other words, this is the space group which contains all translations
of the space and its elements which leave a certain but arbitrary point P of the space
invariant form just the site point group GP . Rigorously speaking, we should consider the
point-like space groups as the symmetry groups of crystals in the continuous description
and homogeneous tensor fields as their material properties.

This also concerns the case of equitranslational phase transitions, which it is virtu-
ally traditional to treat in terms of point groups. The reason why there is no seeming
contradiction is of a group-theoretical nature. The translation subgroup is not changed
in such transitions and hence all quantities which became invariant in the low-symmetry
group transform by those ireps of the parent space group which are engendered by ireps
of its point group. Since the tensor fields are constant throughout the space, we express
the results in terms of point groups and tensor components. This approach should be
considered merely as a suitable way of presenting the information and we should realize
that it will fail the moment we try to consider domain walls. In this case, we cannot
speak about the point symmetry of the wall; its symmetry in a continuous description is
a point-like layer group and it is a sectional layer group of the point-like space group.

In the case of equitranslational transitions, there exist tensor parameters which trans-
form like the primary order parameters (or a set of parameters in many-parametric tran-
sitions). In the case of non-equitranslational transitions, no tensor parameter transforms
like the primary order parameter. All tensor parameters are then secondary parameters
from the viewpoint of the Landau model. However, even in these cases we shall distinguish
the principal and secondary tensor parameters of the ferroic transition.

Comment: The point-like space, layer and rod groups were introduced by Kopský
(1993a,b) and used in the description of domain walls by Př́ıvratská & Janovec (1999).

Ferroic domain states: Ferroic phase transitions are defined as transitions in which
the point symmetry G of the crystal decreases, either to a normal subgroup H of G
or to one of the set of conjugate subgroups Fi. As long as we are interested only in
morphic effects, we can consider these transitions in the continuous approximation. As
shown in the preceding paragraph, the point-like space groups V G should be used as the
symmetry of crystal, V H or V Fi as symmetries of the domain bulk, point-like layer groups
as symmetries of sections (interfaces) and tensor fields should be used instead of tensor
components. However, as long as the analysis of domain walls is not included, we can use
point groups and tensor components to describe the morphic effects in all domain states.
This simplification is suitable for both theoretical consideration and tabular presentation,
and the results can be easily amended.

Let us therefore consider a ferroic phase transition G ⇓ Fi. The first domain state S1

corresponds to the low symmetry F1. The coset resolution

G = F1 ∪ g2F1 ∪ . . . gpF1

of G into left cosets of F1 is again used to derive the set of p = [G : F ] orientation domain
states

S1, S2 = g2S1, . . ., Sp = gpS1
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from a chosen first domain state S1.
We can also consider the fine structure Sij ≈ (x

(α)
ij , . . . ,x

(β)
iβjβ

, . . .) of domain states in
terms of morphic effects. Such structures were found for all ferroic phase transitions by
Kopský (1982) in terms of typical variables. The main tables of the present work describe
the fine structure of the first domain state in terms of onsetting tensors, and they were
obtained by the joint use of these tables and of tables of tensorial covariants (Kopský,
1979a,b). The tables of this work describe the fine structure of the first domain state in
all nonmagnetic ferroic transitions in terms of point groups and tensor components.

An overview of the general analysis.
1. As a first step of the general analysis we consider representatives of all symmetry

descents G ⇓ H or G ⇓ Fi in terms of crystallographic point groups. For each such
symmetry descent we want to find the answers to the following questions:

(i) What are the changes of tensor properties at G ⇓ Fi or, more precisely, what new
tensor parameters distinguish the first domain state S1 (and the other domain states Si)
from the parent state S?

(ii) How do the tensors distinguish domain states of a pair Si and Sj?
(iii) What combinations of stress and electric field force the switching of domain states?

2. Consideration of domain walls (interfaces) of different orientations is the next step.
It is important to realize at this point that domains are regions occupied by the same
phase; domain states refer to various orientations of this phase in space. At this stage, it
is desirable to analyse orientation scanning, i.e. to find the dependence of point-like layer
symmetries on interface orientations.

3. Domain engineering. To analyse the behaviour of multidomain samples we need all
the information from the previous points and, in addition, we have to know (or assume)
the geometry of the domains.

Pairs of domain states and twinning group: Although the tables of fine struc-
ture of typical orbits represent the relationship between any pair of domain states, it is
sufficient to consider, in particular situations, only certain representative pairs of domain
states. It has been shown by Janovec (1972) that the sets of equivalent domain pairs
correspond to double cosets of the low-symmetry group in the parent group. There may
appear situations when the original structure is not known or does not exist at all. If
we know the pair of domain states S1 and S2 = gS1, it is possible to find the tensor dis-
tinction of such a pair with the use of the so-called “twinning group” K = {F1, g} (Fuksa
& Janovec, 1995), generated by the symmetry F1 of the state S1 and by the “twinning
operation” g. The two domain states may then be considered as a result of presumed
transition K ⇓ F1. Analogously, a set of domain states S1, S2 = g2S1, . . ., Sk = gkS1 can
be considered as a result of a transition K ⇓ F1, where K = {F1, g2, . . . , gk} is the group
generated by F1 and elements g2, . . ., gk.

Completely transposable domain pairs: The case of symmetry descent G ⇓ H where
the low-symmetry group H is a halving subgroup of the parent group G represents the
simplest case of symmetry descent, associated with a single one-dimensional irep χα(G)
to which there corresponds one typical variable xα. The subgroup H is the kernel of the
irep χα(G) and it has only one coset gH = Hg, the elements of which change the sign of
the variable xα, so that ghxα = −xα for every gh ∈ gH . Hence only two domain states
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exist, the parameters of which differ only in the sign.
In general, there also exist pairs of domain states (S1, S2) in symmetry descents which

have otherwise a rather complicated structure of domain states but which have the prop-
erty that they are completely transposable. The complete theory and information about
general types of domain pairs and about their tensor distinction is still being developed,
but in this particular case we know the answer. The pair is called completely transposable
if both states have the same symmetry H and if there exists an element g ∈ G which
swaps the domain states, so that gS1 = S2, gS2 = S1. The twinning group of such a pair
of states is then the group K = H∪gH . There exists an irep χα(G) of the twinning group
K of which H is a kernel and we can consider the relationship between the two domain
states as a result of symmetry descent K ⇓ H . From this we conclude immediately which
of the tensor components are identical in both states and which differ in sign. Every
point group which has a halving subgroup appears as a twinning group K for some pairs
of completely transposable domain pairs. To emphasize that the group is interpreted as a
twinning group, we distinguish the elements of the coset by a star (originally an asterisk
was used, but this clashes with notation in reciprocal space). For the twinning groups
we use Schönflies symbols of the form G�(H), while in their Hermann–Mauguin symbols
a star is used as a superscript at those generators which belong to the coset gH . These
symbols are analogous to symbols of magnetic groups and sometimes the twinning groups
are also considered as black-and-white groups as if the domain states are distinguished
as black and white. This, however, is not a correct interpretation. Twinning groups are
ordinary point groups and the star is only a suitable label for distinguishing elements that
change the domain states from those that do not.

Tables of ferroic transitions

Below we give an account of the information which can be explicitly found in the main
tables of the software. Each table is accessible when lattice of the parent group G is
displayed on the screen by choosing the low-symmetry group and the menu item Dom-
ains. The following tensors are involved in these tables: enantiomorphism (chirality)
ε, polarization P , deformation tensor u, tensor of optical activity g, piezoelectricity d,
electro-optics A, elastic stiffness s, elasto-optics Q. In terms of these tensors the main
tables describe:

1. Tensor components common to all domains – invariant under the parent group G.
2. New tensor components which appear in the first domain state of the symmetry F1.

These tensor components are distinguished according to the ireps to which they belong.
This enables us to specify principal tensor parameters with “full” structure of domain
states and secondary parameters with “partial” structure of domain states in the sense
defined by Aizu.

3. The number of conjugate subgroups, total number of domain states, number of
ferroelectric states and of ferroelastic states is given for each partial set of domain states.

4. In the case of transitions that are not associated with one particular irep (irre-
ducible representation), the ferroic subgroup is expressed in terms of true intersections of
epikernels (groups associated with one irep).

5. Algebraic expressions for the construction of the Landau potential.

Remark: To abbreviate expressions of certain polynomials, we use in this part of the
tables special symbols of standard polynomials, the form of which and some relations are
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expressed in Appendix D.

Representative ferroic symmetry descents: As already pointed out, the use of
point groups and tensor components in the description of ferroic transitions is conven-
tional. It simplifies the tabulation and the user can always replace point groups by
point-like space groups and tensor components by homogeneous tensor fields as necessary
when considering domain walls or twin boundaries. A ferroic phase transition is therefore
characterized below by its parent point group G and by the set Fi of its conjugate sub-
groups. In tables we refer to that relation as the symmetry descent G ⇓ Fi and each table
gives the tensor parameters of the first domain state S1 corresponding to the symmetry
F1. Both parent group G and ferroic subgroup F1 must be completely specified with
reference to the Cartesian coordinate system to which the tensor components are related.
From the viewpoint of the macroscopic (continuous) description, it would be sufficient
to consider one parent group of a specific orientation for each geometric crystallographic
class so that altogether we should describe symmetry descents from the 32 parent point
groups. We use a slightly broader viewpoint by considering pairs of parent groups of
different orientations in the following cases:

Geometric class First parent group Second parent group

D2d − 42m D2dz − 4z2xmxy D̂2dz − 4zmx2xy

D3 − 32 D3x − 3z2x D3y − 3z2y

C3v − 3m C3vx − 3zmx C3vy − 3zmy

D3d − 3m D3dx − 3zmx D3dy − 3zmy

D3h − 62m D3h − 6z2xmy D̂3h − 6zmx2y

The reason will become clear on inspection of the space groups of these geometric
classes in Vol. A of International Tables for Crystallography (2002). If the crystallographic
basis (a,b,c) of the respective space groups is chosen in the same way with reference to
the Cartesian basis, then in each of these geometric classes we shall obtain point groups
of two standard orientations as listed above.

From the macroscopic viewpoint it is also not necessary to distinguish between such
symmetry descents as, for example, D2 − 2x2y2z ⇓ C2x − 2x, D2 − 2x2y2z ⇓ C2y − 2y,
D2 − 2x2y2z ⇓ C2z − 2z, or D4z − 4z2x2xy ⇓ (C2x − 2x, C2y − 2y) and D4z − 4z2x2xy ⇓
(C2xy − 2xy, C2xy − 2xy) and others, which are nevertheless given in the tables as distinct
symmetry descents.

As a result, the total number of symmetry descents considered in the main tables is
278, although the number of macroscopically different types is only 212.

An overview and characterization of symmetry descents: There is no natural
order of subgroups of a given group because the subgroups form lattices which are only
partially ordered sets. This makes the search of particular symmetry descents rather un-
pleasant in the printed form (Kopský, 2001b), while in the software we can pick up the
desired table directly. Auxiliary information about representative symmetry descents is
given in Appendix F of this file, where each symmetry descent is characterized according
to the following criteria:

A: Symmetry descent G ⇓ H where H is a normal subgroup of G:

A0. H is a halving subgroup of G.
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A1a. H is a kernel of an irep D(α)(G), which does not generate ireps other than the trivial.
No faint variables.
A1b. H is a kernel of one specific irep D(α)(G), which generates other ireps D(β)(G).
A1c. H is simultaneously a kernel of two ireps D(α1)(G), D(α2)(G).
A2. H is an intersection of two or more kernels but is itself not a kernel of any irep.

B. Symmetry descents G ⇓ Fi where Fi is a set of conjugate subgroups:

B1a. Fi are epikernels of one specific irep D(α)(G) and there are no faint variables for
other ireps.
B1b. Fi are epikernels of one specific irep D(α)(G), and there are faint variables for some
other ireps D(β)(G).
B1c. Fi are simultaneously epikernels of two ireps D(α1)(G), D(α2)(G).
B2. Fi are intersections of epikernels of two or more ireps but they are not epikernels of
any ireps.

The first column of the list contains the parent groups, the second their subgroups. In
the next column, the characteristic of the descent by the criteria above is given, followed
by its exomorphic type as defined by Kopský (1982).

The contents of the tables: The main tables have the following common features:

1. Each table begins with a title Symmetry descent G ⇓ H (cases A) or Symmetry
descent G ⇓ Fi (cases B) in embellished Hermann–Mauguin symbols.

2.1. The heading block bears the specification Parent point group G followed by both
embellished Hermann–Mauguin and Schönflies symbols. The form of tensors which are
allowed by this group is given below.

2.2. In cases of symmetry descents G ⇓ H , where H is a halving subgroup of the
parent group G, an alternative specification or twinning point group K is given followed
by a Hermann–Mauguin symbol in which elements which belong to the coset gH are
distinguished by a star (�) in the superscript and by a Schönflies symbol of the form
G�(H) (cf. the description of the case A0).

3. The rest of the table is divided into rows, each of which corresponds to an irep
χβ(G) for which the stability space Vβ(H) or Vβ(F1) [and hence of all Vβ(Fi)] of the
ferroic subgroup(s) is nontrivial. These rows cross the columns which give the following
information about each irep χβ(G):

3.1. The spectroscopic symbol and description of stability space Vβ(H) or Vβ(F1) in
terms of typical variables is given in the first column.

3.2. The symmetry Fβ1 of the first domain state with reference to the general vector
(vector of stratum) of the space Vβ(F1) in both embellished Schönflies and Hermann–
Mauguin symbols is specified in the second column.

3.3. The third column contains tensorial D(β)(G)-covariants of the tensors considered.

3.4. The last four columns give in order the numbers:

nf = the total number of domain states in the space Vβ;
nF = the number of conjugate subgroups Fβ,i;
na = the number of ferroelastic domain states in the space Vβ;
ne = the number of ferroelectric domain states in the space Vβ.
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An asterisk at the domain number in a specific row means that this number of domains
does not correspond to the irep of this row.

If the transition is single parametric so that the ferroic subgroup is an epikernel (kernel)
of some irep or of two ireps, then the last row corresponds to the irep of the principal
tensor parameters (plural) or, in cases A1c and B1c, the last two rows correspond to the
two potential principal tensor parameters.

If the ferroic subgroup is neither a kernel nor an epikernel of one irep but an intersection
of kernels or epikernels (cases A2 and B2), then the second part of the table begins again
with rows which describe the stability spaces (strata) of the ferroic group in individual
carrier spaces. These rows indicate the stabilizers to these strata (kernels and epikernels)
and describe the tensors and domain states in the same manner as above. None of the
stabilizers is the desired ferroic group in this case. The next part has a special subheading;
the first column headed by Reducible representations contains in each row a direct sum of
stability spaces corresponding to each of the subgroups which lie between epikernels and
the ferroic group; in most cases there is only one such row and the subgroup is already the
ferroic group. The second column headed Ferroic Point Group F ; Intersections shows how
such a subgroup can be expressed as a true intersection of epikernels and what transition
parameters correspond to each such intersection. The last four columns contain again the
numbers nf , nF , na and ne.

In the bottom block of each table the interactions are given in the form:

Integrity basis: Basic invariant polynomials for the transition parameter.
Faint interactions: Linear coupling of faint variables with polynomials in the transition

parameter.
Electric and elastic switching interactions: Linear coupling of the transition parameter

as well as of faint variables with polynomials in components of electric field E or of elastic
field σ.

Specific features corresponding to the characteristics of symmetry descents given above
are:

A0. In this case, H is a kernel of a certain one-dimensional real irep χα and hence
a halving subgroup of the parent group G. All onsetting properties transform like the
respective variable xα and there are two domain states in which all tensor parameters of
this type differ in sign. With reference to the distinction of pairs of domain states, the
parent group can be interpreted as a twinning group K = G�(H).

A1. This indicates a type of symmetry descent G ⇓ H where the ferroic subgroup
H is a kernel of an irep D(α)(G) of dimension 2 or 3. The subgroup H is therefore
the stabilizer of a general vector (vector of stratum) of the space Vα(H). All tensor
components which transform like (xα, yα) or (xα, yα, zα) are allowed in the ferroic state
and the respective domain states form a full set in Aizu’s terminology. If the transition
is equitranslational, then these components also transform like the transition parameter.
The row corresponding to the irep D(α)(G) and subgroup H is located at the bottom of
the central part of the table immediately above the block containing interactions.

B1. This indicates a type of symmetry descent G ⇓ Fi where the ferroic subgroups
Fi are conjugate epikernels of an irep D(α)(G) of dimension 2 or 3. The table is related
to the conventionally chosen first subgroup F1 which is the stabilizer of a general vector
(vector of stratum) of the stability space Vα(F1). This stability space is specified in terms
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of variables (xα, yα) or (xα, yα, zα) with conditions which define Vα(F1) as a subspace of
Vα(dα) [for example (xα, 0), (xα, xα) or (xα, xα, zα)]. The corresponding tensor compo-
nents onset in the ferroic state and the respective domain states again form a full set
in Aizu’s terminology. If the transition is equitranslational, then these components also
transform like the transition parameter. The row corresponding to the irep D(α)(G) and
subgroup F1 is located at the bottom of the central part of the table immediately above
the block containing interactions.

A1a. and B1a. There is only one row in the central part of the table and the entry
Faint interactions: none indicates the absence of faint variables.

A1b. and B1b. The sequence of rows corresponding to ireps D(β)(G) starts with ireps
of lower dimensions and continues to the last row, which corresponds to the irep D(α)(G)
of the principal tensor parameters (primary transition parameter).

A1c. and B1c. In a few cases of this type, both rows corresponding to ireps D(α1)(G),
D(α2)(G) are located at the bottom of the central table. The domain structure is full with
respect to tensor components belonging to both ireps. Since only one irep defines the
transition parameter in the case of equitranslational phase transitions, it is not a priori
clear which of the ireps characterizes the transition parameter. Group theory cannot pro-
vide an answer.

Application to domain walls. “Hic sunt leones.”
A method for the study of domain walls has been described by Janovec (1981) and applied
by Janovec, Schranz, Warhanek & Zikmund (1989) and Janovec & Zikmund (1993). The
Scanning Tables of International Tables for Crystallography Vol. E, Subperiodic Groups
(Kopský & Litvin, 2002) are a prerequisite for such studies in microscopic models (Janovec
& Kopský, 1997; Saint Grégoire, Janovec, & Kopský, 1997). In the case of the continuous
model we need to begin with tensor distinction of domain states. Several papers have
been devoted to its solution: Janovec, Richterová & Litvin (1992, 1993), Janovec, Litvin
& Richterová (1994), Janovec, Litvin & Fuksa (1995), Litvin & Janovec (1997) in the
last decade. All these papers given only information about the number of independent
components by which the domain states differ. With the use of current software and of
conversion relations it is possible to find explicit tensor components in which the domain
states differ. Simple examples are given in the paper by Kopský (2001b). Notice that
all results of this type are based on the technique of Clebsch–Gordan products, which
enables the easy handling of tensorial and polynomial bases.

Final note: All results can be easily extended to magnetic point groups and magnetic
properties with the use of Opechowski’s magic relations. The skilful reader can use the
current material themselves, but a subsequent version of the software is in preparation
which will provide the results explicitly.
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Lattices of equitranslational subgroups

of the space groups

Lattice isomorphism: To facilitate the consideration of equitranslational phase
transitions, the software includes an option for describing lattices of equitranslational
subgroups of space groups. Here we use the well known relationship between the point
groups and space groups: The translation subgroup (crystallographic lattice) of any space
group is its normal subgroup and its point group is the respective factor group. As a con-
sequence, the equitranslational subgroups of the space group can be arranged in a lattice
which is identical with the lattice of subgroups of its point group. In other words, if you
replace the parent point group G in any of the lattices of subgroups of the point groups
by a space group G of which G is its point group, then any of the point groups H or Fi is
uniquely replaced by the corresponding equitranslational subgroup H or Fi of the space
group G.

Lattices of equitranslational subgroups of the space groups were published some time
ago by Ascher (1968) but his tables do not contain the full information. They are given
in terms of Schönflies symbols of space-group types and the information you can obtain
from them is the following:

“If you replace the parent point group in the lattice by a certain space-group type, then
the symbols in the lattice show you the type of the space group by which each point group
should be replaced”.

The present software provides information about equitranslational subgroups of space
groups in two modes which are activated by the choice of item Space under the pull-down
menu Groups when the lattice of subgroups of a certain point group G is displayed on the
screen. The conventions for the interpretation of Schönflies symbols of oriented space-
group types and for the interpretation of Hermann–Mauguin symbols as symbols of quite
specific groups will follow the preliminary guidelines.

After the choice of the option Space, a new panel appears on the screen. In its left-
hand part is a window which contains all Hermann–Mauguin symbols of space groups of
the geometric class G as they appear in Vol. A. These symbols are arranged as closely as
possible to the order in which the space-group types are listed in Vol. A. Deviations from
this order are due to deviations of the standard sequence of space-group types from the
systematic sequence in which groups of the same arithmetic class are listed sequentially
with the symmorphic group as the first. Hence, for example, in the case of cubic system,
groups with lattice type cP are listed first, and then groups with lattice type cF and
finally groups with lattice type cI.

Simplified mode: Each Hermann–Mauguin symbol is accessible by scrolling through
this window. If you click on a chosen symbol, the sequential number of the respective
space-group type, oriented Schönflies symbol of this type and corresponding setting or cell
choice (where applicable) appear in the left-hand part of the panel. At the same time, the
Schönflies symbols of oriented space-group types replace the symbols of the point groups
in the lattice. While this information is more precise than that given in Ascher’s lattices,
it is still not complete.

Complete mode: The choice of the Hermann–Mauguin symbol specifies the parent
group exactly. After clicking on the box of any of the Schönflies symbols of oriented
space-group types, the full information about the respective subgroup appears in the
lower bar of the panel. The reason for such a choice of presentation is rather prosaic; the
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exact specification of the subgroup is usually too long to be accommodated within frames
without disturbing the view of the lattice. It consists in general of three parts:

(i) Hermann–Mauguin symbol,
(ii) a shift of origin which specifies the location of the subgroup if it is not the standard

one,
(iii) specification of the crystallographic basis in cases where it is different from the

basis of the parent group.

When using the complete mode, we should realize that this is the first time that
complete information about equitranslational subgroups is provided and that Hermann–
Mauguin symbols in their traditional interpretation cannot describe the relationship be-
tween the parent group and its equitranslational subgroups properly. This is because
the Hermann–Mauguin symbols do not include the specification of the origin, which is
customarily given separately in the “origin statement”. On the other hand, the Hermann–
Mauguin symbols are perfectly adaptable to be interpreted as symbols of specific groups.
In this software we embark from the notation of Vol. A because no better source is avail-
able. Our interpretation of Hermann–Mauguin symbols is subject to several conventions:

Convention 1: Interpretation of basic symbols: Each Hermann–Mauguin sym-
bol together with the crystallographic coordinate system (P ; a,b, c), where (a,b, c) is
the conventional crystallographic basis, has the meaning of a quite specific space group.
Normally we interpret the Hermann–Mauguin symbol as the symbol of that space group
which is defined by isometries listed in Vol. A under the heading Symmetry operations
or which can be deduced from the general Wyckoff positions. Groups listed in Vol. A
with two origin choices are further distinguished by specification of the choice behind the
symbol. These descriptions are identical with the description from the diagram of the
space group in the “standard setting”.

For Hermann–Mauguin symbols of space groups of the orthorhombic system in “non-
standard settings”, only the description via a diagram is available. In these cases, we
interpret the symbol as the symbol of that space-group type which will be obtained from
the diagram if we assume that, with reference to the location of the symbol, the origin
P is located in the upper left corner of the diagram, vector a down from the origin and
vector b to the right from this origin. In the case of monoclinic groups, there also appear
symbols which correspond to different choices of the unique axis and in some cases to
different choices of the conventional cell. The exact meaning of these symbols can again
be deduced from their diagrams.

Convention 2: Lattice symbols: Below we give the ordinary lattice letters (sym-
bols) in terms of vectors of the conventional basis (a,b, c). The symbol T (a,b, c) means
the translation group generated by these basis vectors.

P (a,b, c) = T (a,b, c)

C(a,b, c) = T (a,b, c)

[
0 ∪ a + b

2

]

A(a,b, c) = T (a,b, c)

[
0 ∪ b + c

2

]
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B(a,b, c) = T (a,b, c)
[
0 ∪ c + a

2

]

I(a,b, c) = T (a,b, c)

[
0 ∪ a + b + c

2

]

F (a,b, c) = T (a,b, c)

[
0 ∪ a + b

2
∪ b + c

2
∪ c + a

2

]

Ro(a,b, c) = T (a,b, c)

[
0 ∪ 2a + b + c

3
∪ a + 2b + 2c

3

]

Rr(a,b, c) = T (a,b, c)

[
0 ∪ a + 2b + c

3
∪ 2a + b + 2c

3

]

Vectors (a,b,c) constitute here the hexagonal basis, to which vectors of rhombohedral
bases in obverse and reverse settings are related by

ao = 1
3
(2a + b + c) ar = 1

3
(−2a − b + c)

bo = 1
3
(−a + b + c) br = 1

3
(a − b + c)

co = 1
3
(−a − 2b + c) cr = 1

3
(a + 2b + c).

Vice versa, the hexagonal vectors are expressed through rhombohedral bases as follows:

a = ao − bo = br − ar

b = bo − co = cr − br

−a − b = co − ao = ar − cr.

As in Vol. A, we use only the obverse rhombohedral setting, using the letter R without
a subscript.

Convention 3: Conventional versus Cartesian bases: Conventional crystallo-
graphic bases are natural and useful for the description of crystal structures as well as
for the description of the space groups. Cartesian bases are, on the other hand, at least
suitable if not mandatory when considering tensor properties. This is why we intro-
duced embellished Schönflies and Hermann–Mauguin symbols for specifically oriented
point groups. As an artefact of this notation we have the symbols of oriented space-group
types in the simplified mode. In the complete mode we express the groups with reference
to crystallographic bases. It is therefore desirable to correlate the choice of these bases
with Cartesian ones. We use the following correspondences:
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Triclinic irrelevant

a b = aex, c = b1ex + b2ey, a = cez

Monoclinic b c = aex, a = b1ex + b2ey, b = cez

c a = aex, b = b1ex + b2ey, c = cez

Orthorhombic a = aex, b = bey, c = cez

Tetragonal a = aex, b = aey, c = cez

Hexagonal a = aex, b = −1
2
aex +

√
3

2
aey, c = cez

Cubic a = aex, b = aey, c = aez

The point groups C1 and Ci of the triclinic system are normal in the orthogonal group
O(3). Orientation has no meaning for them and the relation between the crystallographic
and Cartesian bases is irrelevant. For the groups of the monoclinic system we identify the
unique axes a, b, c with Cartesian directions ex, ey, ez, respectively. For groups of the
hexagonal family we identify the secondary crystallographic direction with the Cartesian
direction ex.

Convention 4: Changes of the conventional basis: Hermann–Mauguin symbols
specify the group with reference to the conventional basis and the admissible choices of
this basis depend on the point group. When considering an equitranslational subgroup
which belongs to the same family as the original group, the conventional bases of the
group and of the subgroup are identical. The conventional basis of an equitranslational
subgroup which belongs to a lower system is, however, frequently different from the con-
ventional basis of the original group. Below we list all cases where this happens and
specify the conventions and changes of the notation we use in such cases. In Table B3 are
collected all embellished lattice symbols which are defined below.

Triclinic Family of Parent Groups:

There are only two types of triclinic space group: C1
1 and C1

i . The specific groups
of these types are denoted by P1 and P1 (s). In the first case, the group is completely
specified by its lattice P = T (a,b, c) and a shift in space does not change the group. In
the second case, the complete specification of the group also requires the specification of
the shift s.

The first group type appears as an equitranslational subgroup of every space group,
the second as the equitranslational subgroup of any centrosymmetric group. The lattice
type is always aP with the standard lattice symbol P . When a triclinic group appears in
tables as a subgroup, we replace its standard lattice symbol by the lattice symbol of the
original group.

Monoclinic Family of Parent Groups:

The lattice type of a group of the monoclinic family does not change for its monoclinic
subgroups. All lattice types turn into the type aP for triclinic subgroups and we use the
lattice symbol of the original group for the subgroup as well, as stated above.
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Table B3. Bravais types of lattices, standard and non-conventional lattice
symbols

Standard Non-conventional
Family/ Bravais lattice lattice
system type symbols symbols

triclinic aP P A, B, C, I, F
(anorthic)

monoclinic mP P P̂a, P̂b, P̂c

UNIQUE AXIS c mS A, B, I Îa, Îb, Îc; Ĉ; Â, B̂
UNIQUE AXIS b mS C, A, I C1, C2, C3; I1, I2, I3

UNIQUE AXIS a mS B, C, I Ia, Ib, Ic; Ĉa, Ĉb, Ĉc

Âa, Âb, Âc; B̂a, B̂b, B̂c

orthorhombic oP , oF , oI P , F , I Ĉ, F̂ ; C1, C2, C3

oS C, A, B Ĉa, Ĉb, Ĉc; F̂a, F̂b, F̂c

Ia, Ib, Ic

tetragonal tP , tI P , I Pa, Pb, Pc

Ia, Ib, Ic; Ia, Ib, Ic

hexagonal/
RP,p, RP,q, RP,r, RP,s

trigonal hP , hR P , R RF,p, RF,q, RF,r, RF,s

RI,p, RI,q, RI,r, RI,s

hexagonal hP P none

cubic cP , cI, cF P , I, F none

Orthorhombic Family of Parent Groups:

Orthorhombic to Monoclinic groups:

Case (a): Orthorhombic lattices of types oP and oI: With reference to monoclinic sub-
groups, the lattices of the types oP and oI correspond to types mP and mS, respectively.
In addition, the conventional bases of orthorhombic groups can also be chosen as the
conventional bases of their monoclinic subgroups. We therefore express the monoclinic
subgroups by their Hermann–Mauguin symbols with reference to these bases using the
same lattice symbols P and I.

Case (b): Orthorhombic lattices of the type oS: These orthorhombic lattices are denoted
by letters A, B or C depending on the setting. Two cases should be distinguished:

Case (b1): The orthorhombic lattice of the type oS is of the type mS with reference
to a monoclinic subgroup in the following cases:
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(i) If the setting of the orthorhombic group is characterized by letter C and the unique
axis of the monoclinic subgroup is either a or b.

(ii) If the setting of the orthorhombic group is characterized by letter A and the unique
axis of the monoclinic subgroup is either b or c.

(iii) If the setting of the orthorhombic group is characterized by letter B and the
unique axis of the monoclinic subgroup is either c or a.

In these cases we retain the original lattice letter and the conventional basis for the
monoclinic subgroups.

Case (b2): The orthorhombic lattice of the type oS is of the type mP with reference
to monoclinic subgroups in the following cases:

(i) Monoclinic subgroup with unique axis c of an orthorhombic group in a setting with
lattice letter C.

(ii) Monoclinic subgroup with unique axis b of an orthorhombic group in a setting with
lattice letter B.

(iii) Monoclinic subgroup with unique axis a of an orthorhombic group in a setting
with lattice letter A.

In these cases we use embellished lattice symbols P̂c, P̂a, P̂b, respectively, where rela-
tions

P̂c = T [(a − b)/2, (a + b)/2, c], P̂a = T [a, (b − c)/2, (b + c)/2],

P̂b = T [(c + a)/2,b, (c− a)/2]

define simultaneously the embellished lattice symbol and the conventional basis of the
monoclinic subgroup.

Case (c): Orthorhombic lattice of the type oF : The orthorhombic lattice of this type
is always of the type mS with reference to all monoclinic subgroups. We choose the
conventional bases of monoclinic subgroups so that they correspond to lattice symbols Îc,
Îa, Îb defined together with conventional monoclinic bases by:

Îc = I[(a − b)/2, (a + b)/2, c], Îa = I[a, (b − c)/2, (b + c)/2],

Îb = I[(c + a)/2,b, (c − a)/2].

Notice that in both choices of P̂c, P̂a, P̂b and Îc, Îa, Îb, the subscripts indicate the
unique axis of the monoclinic subgroup and that the a, b and c unique axes correspond to
the first, second and third positions in the Hermann–Mauguin symbol of the subgroup.

Tetragonal Family of Parent Groups:

Tetragonal to Orthorhombic groups:

Case (a): The conventional bases of tetragonal groups are compatible with the con-
ventional bases of orthorhombic subgroups with point groups D2h; C2vz, C2vx, C2vy ; and
D2 and the tetragonal lattice types tP and tI correspond in these cases to orthorhombic
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lattice types oP and oI. Lattice symbols and conventional bases are retained.

Case (b): The tetragonal lattices of the types tP and tI turn into lattice types oS

and oF with reference to orthorhombic subgroups with the point groups D̂2hz; Ĉ2vz , Ĉ2vx,
Ĉ2vy; D̂2. We choose the conventional orthorhombic bases and define lattice letters as
follows:

Ĉ = C[(a− b), (a + b), c], F̂ = F [(a− b), (a + b), c].

Tetragonal to Monoclinic groups:

Case (a): The conventional bases of the parent tetragonal groups are admissible con-
ventional bases of their monoclinic subgroups with the point groups C2hz, C2hx, C2hy; C2z,
C2x, C2y; and Csz, Csx, Csy. The tetragonal tP -type and tI-types are of the types mP
and mS with reference to these subgroups and both lattice letters P , I as well as the
conventional bases are retained.

Case (b1): The tetragonal lattice of the type tP is of the type mS with reference
to monoclinic point groups C2hxy, C2hxy; C2xy, C2xy; and Csxy, Csxy. We define the
conventional monoclinic basis as above for the orthorhombic case (b) and distinguish the

letter Ĉ from the standard one again by a caret:

Ĉ = C[(a − b)/2, (a + b)/2, c].

Case (b2): The tetragonal lattice of the type tI is again of the type mS with reference
to monoclinic point groups C2hxy, C2hxy; C2xy, C2xy; and Csxy, Csxy. We choose the
monoclinic bases and lattice letters as follows:

Â = A[(a − b + c)/2, (a + b), c],

B̂ = B[(a − b), (a + b + c)/2, c].

Note that all these choices are subordinated to a rule that the tertiary directions [110]
and [110] correspond to the first and second positions, respectively, in the Hermann–
Mauguin symbols of monoclinic subgroups.

Hexagonal Family of Parent Groups:

Let us recall that the hexagonal family splits into the trigonal and hexagonal system.
Both lattice types hP and hR occur in the trigonal system while only the lattice type hP
exists in the hexagonal system. The lattice type hR occurs only in groups of the trigonal
system which have only monoclinic and triclinic subgroups.

Rhombohedral to Monoclinic Lattices:

In view of our choice of the relationship between crystallographic and Cartesian bases
in combination with the obverse setting (used in Vol. A), we consider only those trigonal
groups with a rhombohedral lattice which have the point groups C3i (3z), D3dx (3zmx1),
D3x (3z2x1), or C3vx (3zmx1). The lattice type hR turns into the type mS with reference
to monoclinic subgroups, and we choose the lattice letters and conventional monoclinic
bases as follows:
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I1 = I(a,−co, c), I2 = I(b,−ao, c), I3 = I(−a − b,−bo, c).

As a result of this choice, the orientation of the monoclinic axis corresponds to the first
position in the Hermann–Mauguin symbols for the three conjugate monoclinic subgroups.

Hexagonal to Orthorhombic and Monoclinic Lattices:

The lattice type hP turns into the type mS for monoclinic subgroups of both trigo-
nal and hexagonal groups and into the type oS for orthorhombic subgroups of hexagonal
groups. In both cases we use the following lattice symbols with the well known “ortho-
hexagonal bases”:

C1 = C(a, 2b + a, c), C2 = C(b,−2a− b, c), C3 = C(−a − b, a− b, c).

As a result, the two triplets of hexagonal directions, to which we assigned the axes x,
x′, x′′ and y, y′, y′′, correspond to the first and second positions in Hermann–Mauguin
symbols, while the z axis corresponds to the third position for orthorhombic as well as
for monoclinic subgroups.

Cubic Family of Parent Groups:

We divide the subgroups of cubic groups into three categories:

1. Subgroups the main axis and one of the auxiliary axes (if present) of which are
directed along the primary cubic direction.

2. Subgroups with two axes or with one main axis directed along the tertiary cubic
direction.

3. Subgroups with main axes along the secondary cubic directions.

Below we consider these in more detail:

1. Subgroups with primary (and secondary, where applicable) directions along the primary
cubic directions:

In this category we distinguish four cases:

Case (a): The lattices types cP , cF and cI turn into the types oP , oF and oI for
the orthorhombic subgroups with point groups D2h (mxmymz), C2vz (mxmy2z), C2vx

(2xmymz), C2vy (mx2ymz) and D2 (2x2y2z). In all these cases we retain the original
lattice symbol and the conventional basis.

Case (b): The lattice types cP and cI turn into the types tP and tI with reference
to the tetragonal subgroups. However, the tetragonal conventional bases depend on the
orientation of the tetragonal axis and two of the primary directions in cubic groups become
secondary directions in tetragonal subgroups. To keep the order of elements in Hermann–
Mauguin symbols of tetragonal subgroups, we choose the conventional tetragonal bases
and supply the lattice letter P and I with subscripts c, a and b, so that we denote:

Pc = P (a,b, c), Pa = P (b, c, a), Pb = P (c, a,b)

Ic = I(a,b, c), Ia = I(b, c, a), Ib = I(c, a,b).
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Case (c): Cubic lattices of the type cF are of the type tI with reference to tetragonal
subgroups. We use the following choice of lattice letters and of the tetragonal conventional
bases:

Ic = I[(a − b)/2, (a + b)/2, c],

Ia = I[(b− c)/2, (b + c)/2, a] Ib = I[(c − a)/2, (c + a)/2,b].

Note that the subscripts refer to the direction of the main tetragonal axis of the
subgroup. It is worth mentioning that the origins of all standard cubic groups lie on
the threefold axis 3p (direction [111]). The rotations about this axis send the tetragonal
subgroups to their conjugates by cyclic permutation of the vectors a, b, c. In terms of
symbols this means cyclic permutation of indices a, b, c and of vectors a, b, c in the
space shift after the symbol. It is therefore sufficient to give only one of the conjugate
tetragonal subgroups. This is useful in the tabular presentation of results which lies
behind the computerized presentation. There we use the tetragonal subgroup with the
principal axis along c, i.e. along the [001] cubic direction. However, the program displays
all cases.

Case (d): The cubic lattices of the types cP , cI are of the types mP and mI and the
lattice type cF turns into the type mI for monoclinic subgroups with unique axis along
the primary cubic direction. In the first two cases, we retain the lattice symbol and the
conventional basis; in the last case we use the embellished lattices symbols

Îc = I[(a − b)/2, (a + b)/2, c],

Îa = I[(a,b − c)/2, (b + c)/2], Îb = I[(c + a)/2,b, (c− a)/2].

As a result, the positions in the Hermann–Mauguin symbols of monoclinic subgroups
correspond to the cubic axes a, b and c, which turn into the monoclinic unique axes.

2. Subgroups with axes along tertiary cubic directions:

Case (a): Orthorhombic subgroups with one of the axes along primary and two axes
along tertiary cubic directions appear either in triads of conjugate subgroups with point
groups

D̂2hz (mxymxymz), D̂2hx (myzmyzmx), D̂2hy (mzxmzxmy);

D̂2z (2xy2xy2z), D̂2x (2yz2yz2x), D̂2y (2zx2zx2y);

and

Ĉ2vz (mxymxy2z), Ĉ2vx (myzmyz2x), Ĉ2vy (mzxmzx2y);

or in sixtuples of conjugate subgroups with point groups

Ĉ2vxy (2xymxymz), Ĉ2vyz (2yzmyzmx), Ĉ2vzx (2zxmzxmy),

Ĉ2vxy (mxy2xymz), Ĉ2vyz (myz2yzmx), Ĉ2vzx (mzx2zxmy).

In all these cases we have one of the three following relationships to the original cubic
lattices:

Case (a1): The cubic lattice of the type cP is of the type oS with reference to these
point groups and we choose the conventional bases and lattice letters as follows:

Ĉc = C[(a − b), (a + b), c],
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Ĉa = C[(b − c), (b + c), a], Ĉb = C[(c − a), (c + a),b].

Case (a2): The cubic lattice of the type cF is of the type oI with reference to these
point groups and we choose the conventional bases and lattice letters as follows:

Ic = I[(a − b)/2, (a + b)/2, c],

Ia = I[(b − c)/2, (b + c)/2, a], Ib = I[(c − a)/2, (c + a)/2,b].

Case (a3): The cubic lattice of the type cI is of the type oF with reference to these
point groups and we choose the conventional bases and lattice letters as follows:

F̂c = F [(a− b)/2, (a + b)/2, c],

F̂a = F [(b − c)/2, (b + c)/2, a], F̂b = F [(c − a)/2, (c + a)/2,b].

Case (b): Monoclinic subgroups with unique axis along the tertiary cubic direction
appear in sixtuples of conjugate subgroups with point groups:

Ĉ2hxy (12xy/mxy1), Ĉ2hyz (12yz/myz1), Ĉ2hzx (12zx/mzx1),

Ĉ2hxy (2xy/mxy11), Ĉ2hyz, (2yz/myzy11), Ĉ2hzx (2zx/mzx11),

Ĉ2xy (12xy1), Ĉ2yz (12yz1), Ĉ2zx (12zx1), Ĉ2xy (2xy11), Ĉ2yz, (2yz11), Ĉ2zx (2zx11),
and

Ĉsxy (1mxy1), Ĉsyz (1myz1), Ĉszx (1mzx1), Ĉsxy (mxy11), Ĉsyz, (myz11), Ĉszx (mzx11),

Case (b1): The cubic lattices of types cP and cF turn, respectively, into types oS and
oI in the orthorhombic case and both turn into type mS in the monoclinic case. The
choice of lattice letters and of conventional bases

Ĉc = C[(a − b), (a + b), c], Ĉa = C[(b− c), (b + c), a],

Ĉb = C[(c − a), (c + a),b]

and
Ic = I[(a − b)/2, (a + b)/2, c], Ia = I[(b− c)/2, (b + c)/2, a],

Ib = I[(c − a)/2, (c + a)/2,b]

is such that the directions [110] and [110] correspond to the first and second positions in
the Hermann–Mauguin symbols in both orthorhombic and monoclinic cases. So do the
other pairs of directions obtained by threefold rotations.

Case (b1) and (b2): The cubic lattice types cP and cF turn into the types mP and mS
for subgroups with these monoclinic point groups and we choose the embellished lattice
letters Ĉc, Ĉa, Ĉb and Ic, Ia, Ib, and conventional bases as above in cases (a1) and (a2)
of the orthorhombic subgroups.

Case (b3): The cubic lattice type cI becomes of the type mS with reference to these
monoclinic subgroups. We choose the lattice letters and conventional bases as follows:

Âc = A[(a − b + c)/2, (a + b), c], B̂c = B[(a − b), (a + b + c)/2, c],

Âa = A[(b − c + a)/2, (b + c), a], B̂a = B[(b − c), (b + c + a)/2, a],
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Âb = A[(c − a + b)/2, (c + a),b], B̂b = B[(c − a), (c + a + b)/2,b].

This is the same as in case (b2) of tetragonal to monoclinic groups with additional
subscripts c, a, b.

3. Cubic to Trigonal Groups with a Rhombohedral Lattice:

All three types cP , cI and cF of cubic lattices correspond to rhombohedral lattices
of the type R for the trigonal subgroups of geometric classes D3d, D3, C3v and C3. The
threefold cubic axes turn into the trigonal axes distinguished by subscripts p, q, r and
s for the directions [111], [111], [111] and [111], respectively. The trigonal subgroups
are denoted by Hermann–Mauguin symbols embellished by superscripts which denote the
original cubic type of the lattice and the orientation of the trigonal axis. The conventional
bases of trigonal subgroups are then chosen as follows from the table below.

P =⇒ RP,p = T (a,b, c)
RP,q = T (−a,−b, c)
RP,r = T (a,−b,−c)
RP,s = T (−a,b,−c)

I =⇒ RI,p = T [(a + b − c)/2, (b + c − a)/2, (c + a− b)/2]
RI,q = T [(−a − b− c)/2, (−b + c + a)/2, (c− a + b)/2]
RI,r = T [(a − b + c)/2, (−b− c − a)/2, (−c + a + b)/2]
RI,s = T [(−a + b + c)/2, (b− c + a)/2, (−c − a − b)/2]

F =⇒ RF,p = T [(a + b)/2, (b + c)/2, (c + a)/2]
RF,q = T [(−a − b)/2, (−b + c)/2, (c− a)/2]
RF,r = T [(a− b)/2, (−b− c)/2, (−c + a)/2]
RF,s = T [(−a + b)/2, (b− c)/2, (−c− a)/2].
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Saint Grégoire, P., Janovec, V. & Kopský, V. (1997). A sample analysis of domain walls
in simple cubic phase of C60. Ferroelectrics, 191, 73–78.

Sirotin, Yu. I. & Shaskolskaya, M. P. (1975). Osnovi Kristallofiziki. Moscow: Nauka.

Stokes, H. T. & Hatch, D. M. (1988). Isotropy subgroups of the 230 crystallographic space
groups. Singapore: World Scientific.

Tolédano, P. & Dmitriev, V. (1996). Reconstructive phase transitions in crystals and
quasicrystals. Singapore: World Scientific.

Tomaszewski, P. E. (1992). Structural phase transitions in crystals. I. Database. II.
Statistical analysis. Phase Transit. 38, 127–220 and 221–228.

Unruh, H.-G. (1970). The spontaneous polarization of (NH4)2SO4. Solid State Commun.
8, 1951–1954.

Voigt, W. (1910). Lehrbuch der Kristallphysik. New York, Stuttgart: Teubner.
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Appendix A

Correlation of various notations and
Jones’ faithful representation symbols:

Table A1: Cubic group Oh − m3m -
subgroup of proper rotations O − 432

Cubic system

std. B.C. A.H. Asch. Kpts. Kov. IT83 Jon.

e E E 1 1 h1 1 x, y, z
2z C2z 2z 42

3 h4 2 0, 0, z x, y, z
2x C2x 2x 42

1 h2 2 x, 0, 0 x, y, z
2y C2y 2y 42

1 h3 2 0, y, 0 x, y, z

3p C+
31 3δ 31 h9 3+ x, x, x z, x, y

3q C+
32 3γ 32 h11 3+ x, x, x z, x, y

3r C+
33 3α 34 h12 3+ x, x, x z, x, y

3s C+
34 3β 33 h10 3+ x, x, x z, x, y

32
p C−

31 32
δ 32

1 h5 3− x, x, x y, z, x
32

q C−
32 32

γ 32
2 h6 3− x, x, x y, z, x

32
r C−

33 32
α 32

4 h7 3− x, x, x y, z, x
32

s C−
34 32

β 32
3 h8 3− x, x, x y, z, x

4z C+
4z 4z 43 h14 4+ 0, 0, z y, x, z

4x C+
4x 4x 41 h19 4+ x, 0, 0 x, z, y

4y C+
4y 4y 42 h24 4+ 0, y, 0 z, y, x

43
z C−

4z 43
z 43

3 h15 4− 0, 0, z y, x, z
43

x C−
4x 43

x 43
1 h20 4− x, 0, 0 x, z, y

43
y C−

4y 43
y 43

2 h22 4− 0, y, 0 z, y, x

2xy C2a C ′
2a 2e 21 h16 2 x, x, 0 y, x, z

2xy C2b C ′
2b 2f 22 h13 2 x, x, 0 y, x, z

2zx C2c C ′
2c 2c 23 h23 2 x, 0, x z, y, x

2zx C2e C ′
2e 2d 24 h21 2 x, 0, x z, y, x

2yz C2d C ′
2d 2a 25 h18 2 0, y, y x, z, y

2yz C2f C ′
2f 2b 26 h17 2 0, y, y x, z, y
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Table A1 (cont.1/end): Cubic group Oh − m3m -
coset of improper rotations iO = Oi

Cubic system

std. B.C. A.H. Asch. Kpts. Kov. IT83 Jon.

i I i 1 2̃ h25 1 0, 0, 0 x, y, z
mz σz mz m3 h28 m x, y, 0 x, y, z
mx σx mx m1 h26 m 0, y, z x, y, z
my σy my m2 h27 m x, 0, z x, y, z

3p S−
61 3δ 6̃5

1 h33 3
+

x, x, x z, x, y

3q S−
62 3γ 6̃5

2 h35 3
+

x, x, x z, x, y

3r S−
63 3α 6̃5

4 h36 3
+

x, x, x z, x, y

3s S−
64 3β 6̃5

3 h34 3
+

x, x, x z, x, y

3
5
p S+

61 3
2
δ 6̃1 h29 3

−
x, x, x y, z, x

3
5
q S+

62 3
2
γ 6̃2 h30 3

−
x, x, x y, z, x

3
5
r S+

63 3
2
α 6̃4 h31 3

−
x, x, x y, z, x

3
5
s S+

64 3
2
β 6̃3 h32 3

−
x, x, x y, z, x

4z S−
4z 4z 4̃3

3 h38 4
+

0, 0, z y, x, z

4x S−
4x 4x 4̃3

1 h43 4
+

x, 0, 0 x, z, y

4y S−
4y 4y 4̃2 h48 4

+
0, y, 0 z, y, x

4
3
z S+

4z 4
3
z 4̃3 h39 4

−
0, 0, z y, x, z

4
3
x S+

4x 4
3
x 4̃1 h44 4

−
x, 0, 0 x, z, y

4
3
y S+

4y 4
3
y 4̃2 h46 4

−
0, y, 0 z, y, x

mxy σda σd1 me m5 h40 m x, x, z y, x, z
mxy σdb σd2 mf m4 h37 m x, x, z y, x, z
mzx σdc σd3 mc m7 h47 m x, y, x z, y, x
mzx σde σd5 md m6 h45 m x, y, x z, y, x
myz σdd σd4 ma m9 h42 m x, y, y x, z, y
myz σdf σd6 mb m8 h41 m x, y, y x, z, y
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Table A2: Hexagonal group D6h − 6z/mzmxmy -
subgroup of proper rotations D6 − 6z2x2y

Hexagonal system

std. B.C.=A.H. Asch. Kpts. Kov. IT83 Jon.

e E 1 1 h1 1 x, y, z
6z C+

6 6 6 h2 6+ 0, 0, z x − y, x, z
3z C+

3 3 62 h3 3+ 0, 0, z y, x − y, z
2z C2 2 63 h4 2 0, 0, z x, y, z
32

z C−
3 32 64 h5 3− 0, 0, z y − x, x, z

65
z C−

6 65 65 h6 6− 0, 0, z y, y − x, z

2x C ′′
21 21 21 h9 2 x, 0, 0 x − y, y, z

2x′ C ′′
22 23 23 h7 2 0, y, 0 x, y − x, z

2x′′ C ′′
23 25 25 h11 2 x, x, 0 y, x, z

2y C ′
21 22 24 h12 2 x, 2x, 0 y − x, y, z

2y′ C ′
22 24 26 h10 2 2x, x, 0 x, x − y, z

2y′′ C ′
23 26 22 h8 2 x, x, 0 y, x, z

Hexagonal group D6h − 6z/mzmxmy -
coset of improper rotations iD6 = D6i

Hexagonal system

std. B.C.=A.H. Asch. Kpts. Kov. IT83 Jon.

i I 1 2̃ h13 1 0, 0, 0 x, y, z

6z S−
3 6 3̃5 h14 6

+
0, 0, z y − x, x, z

3z S−
6 3 6̃5 h15 3

+
0, 0, z y, y − x, z

mz σh m m h16 m x, y, 0 x, y, z

3
5
z S+

6 3
2

6̃ h17 3
−

0, 0, z x − y, x, z

6
5
z S+

3 6
5

3̃ h18 6
−

0, 0, z y, x − y, z

mx σv1 m1 m1 h21 m x, 2x, z y − x, y, z
mx′ σv2 m3 m3 h19 m 2x, x, z x, x − y, z
mx′′ σv3 m5 m5 h23 m x, x, z y, x, z

my σd1 m2 m4 h24 m x, 0, z x − y, y, z
my′ σd2 m4 m6 h22 m 0, y, z x, y − x, z
my′′ σd3 m6 m4 h20 m x, x, z y, x, z
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Some relations between powers of elements

We use throughout only those elements or their powers which are listed in Tables A1,
A2 under the heading std. with various subscripts indicating directions of axes. These are
listed below as the first ones with a common subscript z in relations to valid but unused
powers. The relations on the left-hand side show powers of elements which have the same
meaning, the relations on the right-hand side show the inverses in terms of used symbols.

2z = 42
z = 4

2
z = 63

z 43
z = 4−1

z , 4
3
z = 4

−1
z

3z = 62
z = 6

2
z = 3

4
z 32

z = 3−1
z , 65

z = 6−1
z

32
z = 64

z = 6
4
z = 3

2
z 3

5
z = 3

−1
z , 6

5
z = 6

−1
z

i = 3
3
z; mz = 6

3
z

References from which symbols are taken and comments

std. This manual and software
B.C. Bradley, C.J., and Cracknell, A.P., The Mathematical Theory

of Symmetry in Solids. OUP, Oxford (1972).
A.H. Altmann S.L., & Herzig P., Point Group Theory Tables.

Clarendon Press, Oxford (1994).
Asch. Ascher, E., Properties of Shubnikov point groups. Part 1.

Battelle Report, Geneva.
Kpts. Koptsik V. A., Shubnikovskie gruppy.

Moscow University Press, Moscow (1966).
Kov. Kovalev O.V., Irreducible representations of the space groups.

Gordon & Breach, New York (1965).
IT83 International Tables for Crystallography.

Vol. A: Space-Group Symmetry.
Edited by T. Hahn. Kluwer, Dordrecht (1983, 1984, 1987, 1989, 1992, 1995).

Jon. Jones’ faithful symbols (see Bradley & Cracknell, 1972).

Comments: The standard symbols belong to a variety of symbols, used, for example, by
Ascher or by Koptsik; other symbols of this type are scattered in the literature with
different subscripts (crystallographers would probably prefer subscripts [111], [111], [111],
[111] to our p, q, r, s and even worse for x, x′, x′′ and y, y′, y′′). Spectroscopic symbols,
though rather widely used, are not completely compatible even in the two main cited
sources; some of them are too close to Schönflies symbols for point groups. Symbols by
Kovalev do not bear any explicit information with the exception of h1 which is the unit
element. In addition, the letters hi with the same index i have different meaning in cubic
and hexagonal groups. The symbols used in International Tables (Tables 11.2 and 11.3 for
our Tables A1 and A2) are the most complicated and least suitable for further handling;
for example, it is quite out of question to use them in Seitz symbols.
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Appendix B

Schönflies and Hermann-Mauguin Symbols of
Groups in Standard Orientations and of their Subgroups

Cubic system

Oh − m3m
Th − m3 O − 432 Td − 43m

T − 23

Tetragonal system

D4hz − 4z/mzmxmxy D4hx − 4x/mxmymyz D4hy − 4y/mymzmzx

D4z − 4z2x2xy D4x − 4x2y2yz D4y − 4y2z2zx

C4vz − 4zmxmxy C4vx − 4xmymyz C4vy − 4ymzmzx

D2dz − 4z2xmxy D2dx − 4x2ymyz D2dy − 4y2zmzx

D̂2dz − 4zmx2xy D̂2dx − 4xmy2yz D̂2dy − 4ymz2zx

C4hz − 4z/mz C4hx − 4x/mx C4hy − 4y/my

C4z − 4z C4x − 4x C4y − 4y

S4z − 4z S4x − 4x S4y − 4y

Hexagonal family

Hexagonal system

D6h − 6z/mzmxmy

D6 − 6z2x2y

C6v − 6zmxmy

D3h − 6z2xmy

D̂3h − 6zmx2y

C6h − 6z/mz

C6 − 6z

C3h − 6z

Trigonal system
Cubic branch

D3dp − 3pmxy D3dq − 3qmxy D3dr − 3rmxy D3ds − 3smxy

D3p − 3p2xy D3q − 3q2xy D3r − 3r2xy D3s − 3s2xy

C3vp − 3pmxy C3vq − 3qmxy C3vr − 3rmxy C3vs − 3smxy

C3ip − 3p C3iq − 3q C3ir − 3r C3is − 3s

C3p − 3p C3q − 3q C3r − 3r C3s − 3s

Hexagonal branch

D3dx − 3zmx1 D3dy − 3z1my

D3x − 3z2x1 D3y − 3z12y

C3vx − 3zmx1 C3vy − 3z1my

C3i − 3z

C3 − 3z
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Orthorhombic system

Cubic branch Common Hexagonal branch

D̂2hz − mxymxymz D̂2hx − myzmyzmx D̂2hy − mzxmzxmy D2h − mxmymz D2h′ − mx′my′mz D2h′′ − mx′′my′′mz

D̂2z − 2xy2xy2z D̂2x − 2yz2yz2x D̂2y − 2zx2zx2y D2 − 2x2y2z D2′ − 2x′2y′2z D2′′ − 2x′′2y′′2z

Ĉ2vz − mxymxy2z Ĉ2vxy − mxy2xymz Ĉ2vxy − 2xymxymz C2vz − mxmy2z C2vz′ − mx′my′2z C2vz′′ − mx′′my′′2z

Ĉ2vx − myzmyz2x Ĉ2vyz − myz2yzmx Ĉ2vyz − 2yzmyzmx C2vx − 2xmymz C2vx′ − 2x′my′mz C2vx′′ − 2x′′my′′mz

Ĉ2vy − mzxmzx2y Ĉ2vzx − mzx2zxmy Ĉ2vzx − 2zxmzxmy C2vy − mx2ymz C2vy′ − mx′2y′mz C2vy′′ − mx′′2y′′mz

Monoclinic system

Cubic branch Common Hexagonal branch

C2hxy − 2xy/mxy C2hxy − 2xy/mxy C2hz − 2z/mz

C2hyz − 2yz/myz C2hyz − 2yz/myz C2hx − 2x/mx C2hx′ − 2x′/mx′ C2hx′′ − 2x′′/mx′′

C2hzx − 2zx/mzx C2hzx − 2zx/mzx C2hy − 2y/my C2hy′ − 2y′/my′ C2hy′′ − 2y′′/my′′

C2xy − 2xy C2xy − 2xy C2z − 2z

C2yz − 2yz C2yz − 2yz C2x − 2x C2x′ − 2x′ C2x′′ − 2x′′

C2zx − 2zx C2zx − 2zx C2y − 2y C2y′ − 2y′ C2y′′ − 2y′′

Csxy − mxy Csxy − mxy Csz − mz

Csyz − myz Csyz − myz Csx − mx Csx′ − mx′ Csx′′ − mx′′

Cszx − mzx Cszx − mzx Csy − my Csy′ − my′ Csy′′ − my′′

Inversion group Ci − 1
Common to all centrosymmetric groups

Identity group C1 − 1
Common to all groups
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Appendix C

Isomorphisms used for defining irreducible representations

Triclinic groups

Isomorphism class 1 ≈ C1 e = 1

Isomorphism class 1 ≈ Ci e = 1 i = 1

Monoclinic groups

Isomorphism class 2 ≈ C2 Isomorphism class 2/m ≈ C2h

C2z (2z) e 2z Csz (mz) e mz C2hz (2z/mz) e 2z i mz

C2x (2x) e 2x Csx (mx) e mx C2hx (2x/mx) e 2x i mx

C2y (2y) e 2y Csy (my) e my C2hy (2y/my) e 2y i my

C2xy (2xy) e 2xy Csxy (mxy) e mxy C2hxy (2xy/mxy) e 2xy i mxy

C2xy (2xy) e 2xy Csxy (mxy) e mxy C2hxy (2xy/mxy) e 2xy i mxy

C2yz (2yz) e 2yz Csyz (myz) e myz C2hyz (2yz/myz) e 2yz i myz

C2yz (2yz) e 2yz Csyz (myz) e myz C2hyz (2yz/myz) e 2yz i myz

C2zx (2zx) e 2zx Cszx (mzx) e mzx C2hzx (2zx/mzx) e 2zx i mzx

C2zx (2zx) e 2zx Cszx (mzx) e mzx C2hzx (2zx/mzx) e 2zx i mzx

C2x′ (2x′) e 2x′ Csx′ (mx′) e mx′ C2hx′ (2x′/mx′) e 2x′ i mx′

C2x′′ (2x′′) e 2x′′ Csx′′ (mx′′) e mx′′ C2hx′′ (2x′′/mx′′) e 2x′′ i mx′′

C2y′ (2y′) e 2y′ Csy′ (my′) e my′ C2hy′ (2y′/my′) e 2y′ i my′

C2y′′ (2y′′) e 2y′′ Csy′′ (my′′) e my′′ C2hy′′ (2y′′/my′′) e 2y′′ i my′′
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Orthorhombic groups

Isomorphism class 222 ≈ D2 Isomorphism class mmm ≈ D2h

D2 (2x2y2z) e 2z 2x 2y D2h (mxmymz) e 2z 2x 2y i mz mx my

C2vz (mxmy2z) e 2z mx my

C2vx (2xmymz) e mz 2x my

C2vy (mx2ymz) e mz mx 2y

D̂2z (2xy2xy2z) e 2z 2xy 2xy D̂2hz (mxymxymz) e 2z 2xy 2xy i mz mxy mxy

Ĉ2vz (mxymxy2z) e 2z mxy mxy

Ĉ2vxy (mxy2xymz) e mz mxy 2xy

Ĉ2vxy (2xymxymz) e mz 2xy mxy

D̂2x (2yz2yz2x) e 2x 2yz 2yz D̂2hx (myzmyzmx) e 2x 2yz 2yz i mx myz myz

Ĉ2vx (myzmyz2x) e 2x myz myz

Ĉ2vyz (myz2yzmx) e mx myz 2yz

Ĉ2vyz (2yzmyzmx) e mx 2yz myz

D̂2y (2zx2zx2y) e 2y 2zx 2zx D̂2hy (mzxmzxmy) e 2y 2zx 2zx i my mzx mzx

Ĉ2vy (mzxmzx2y) e 2y mzx mzx

Ĉ2vzx (mzx2zxmy) e my mzx 2zx

Ĉ2vzx (2zxmzxmy) e my 2zx mzx

D2′ (2x′2y′2z) e 2z 2x′ 2y′ D2h′ (mx′my′mz) e 2z 2x′ 2y′ i mz mx′ my′

C2vz′ (mx′my′2z) e 2z mx′ my′

C2vx′ (2x′my′mz) e mz 2x′ my′

C2vy′ (mx′2y′mz) e mz mx′ 2y′

D2′′ (2x′′2y′′2z) e 2z 2x′′ 2y′′ D2h′′ (mx′′my′′mz) e 2z 2x′′ 2y′′ i mz mx′′ my′′

C2vz′′ (mx′′my′′2z) e 2z mx′′ my′′

C2vx′′ (2x′′my′′mz) e mz 2x′′ my′′

C2vy′′ (mx′′2y′′mz) e mz mx′′ 2y′′
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Tetragonal groups

Isomorphism class 4 ≈ C4

C4z (4z) e 4z 2z 4−1
z

S4z (4z) e 4z 2z 4−1
z

C4x (4x) e 4x 2x 4−1
x

S4x (4x) e 4x 2x 4−1
x

C4y (4y) e 4y 2y 4−1
y

S4y (4y) e 4y 2y 4−1
y

Isomorphism class 422 ≈ D4

D4z (4z2x2xy) e 4z 2z 4−1
z 2x 2xy 2y 2xy

C4vz (4zmxmxy) e 4z 2z 4−1
z mx mxy my mxy

D2dz (4z2xmxy) e 4z 2z 4−1
z 2x mxy 2y mxy

D̂2dz (4zmx2xy) e 4z 2z 4−1
z mx 2xy my 2xy

D4x (4x2y2yz) e 4x 2x 4−1
x 2y 2yz 2z 2yz

C4vx (4xmymyz) e 4x 2x 4−1
x my myz mz myz

D2dx (4x2ymyz) e 4x 2x 4−1
x 2y myz 2z myz

D̂2dx (4xmy2yz) e 4x 2x 4−1
x my 2yz mz 2yz

D4y (4y2z2zx) e 4y 2y 4−1
y 2z 2zx 2x 2zx

C4vy (4ymzmzx) e 4y 2y 4−1
y mz mzx mx mzx

D2dy (4y2zmzx) e 4y 2y 4−1
y 2z mzx 2x mzx

D̂2dy (4ymz2zx) e 4y 2y 4−1
y mz 2zx mx 2zx

Isomorphism class 4/mmm ≈ D4h

D4hz (4z/mzmxmxy) e 4z 2z 4−1
z 2x 2xy 2y 2xy i 4z mz 4−1

z mx mxy my mxy

D4hx (4x/mxmymyz) e 4x 2x 4−1
x 2y 2yz 2z 2yz i 4x mx 4−1

x my myz mz myz

D4hy (4y/mymzmzx) e 4y 2y 4−1
y 2z 2zx 2x 2zx i 4y my 4−1

y mz mzx mx mzx

C-3



Trigonal groups

Isomorphism class 3 ≈ C3 Isomorphism class 3 ≈ C3i

C3 (3) e 3 32 C3i (3) e 3 32 i 3 35

C3p (3p) e 3p 32
p C3ip (3p) e 3p 32

p i 3p 35
p

C3q (3q) e 3q 32
q C3iq (3q) e 3q 32

q i 3q 35
q

C3r (3r) e 3r 32
r C3ir (3r) e 3r 32

r i 3r 35
r

C3s (3s) e 3s 32
s C3is (3s) e 3s 32

s i 3s 35
s

Isomorphism class 32 ≈ D3

D3x (3z2x1) e 3z 32
z 2x 2x′′ 2x′

C3vx (3zmx1) e 3z 32
z mx mx′′ mx′

D3y (3z12y) e 3z 32
z 2y 2y′′ 2y′

C3vy (3z1my) e 3z 32
z my my′′ my′

D3p (3p2xy) e 3p 32
p 2xy 2yz 2zx

D3q (3q2xy) e 3q 32
q 2xy 2yz 2zx

D3r (3r2xy) e 3r 32
r 2xy 2yz 2zx

D3s (3s2xy) e 3s 32
s 2xy 2yz 2zx

C3vp (3pmxy) e 3p 32
p mxy myz mzx

C3vq (3qmxy) e 3q 32
q mxy myz mzx

C3vr (3rmxy) e 3r 32
r mxy myz mzx

C3vs (3smxy) e 3s 32
s mxy myz mzx

Isomorphism class 32 ≈ D3d

D3dx (3zmx1) e 3z 32
z 2x 2x′′ 2x′ i 3z 35

z mx mx′′ mx′

D3dy (3z1my) e 3z 32
z 2y 2y′′ 2y′ i 3z 35

z my my′′ my′

D3dp (3pmxy) e 3p 32
p 2xy 2yz 2zx i 3p 35

p mxy myz mzx

D3dq (3qmxy) e 3q 32
q 2xy 2yz 2zx i 3q 35

q mxy myz mzx

D3dr (3rmxy) e 3r 32
r 2xy 2yz 2zx i 3r 35

r mxy myz mzx

D3ds (3smxy) e 3s 32
s 2xy 2yz 2zx i 3s 35

s mxy myz mzx
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Hexagonal groups

Isomorphism class 6 ≈ C6

C6 (6z) e 6z 3z 2z 32
z 65

z

C3h (6z) e 6z 3z mz 32
z 65

z

Isomorphism class 622 ≈ D6

D6 (6z2x2y) e 6z 3z 2z 32
z 65

z 2x 2y′ 2x′′ 2y 2x′ 2y′′

C6v (6zmxmy) e 6z 3z 2z 32
z 65

z mx my′ mx′′ my mx′ my′′

D3h (6z2xmy) e 6z 3z mz 32
z 65

z 2x my′ 2x′′ my 2x′ my′′

D̂3h (6zmx2y) e 6z 3z mz 32
z 65

z mx 2y′ mx′′ 2y mx′ 2y′′

Cubic groups

Isomorphism class 432 ≈ O

O (432) T 4zT
Td (432) T 4zT

Note: Trigonal subgroups of cubic groups are defined as follows:

Subscripts p, q, r and s correspond to rotations about threefold axes with directions [111], [111],
[111] and [111], respectively.

The group D3p with main axis along [111] therefore has elements:
e, 3p, 32

p, 2xy, 2yz and 2zx.
Groups D3q, D3r and D3s are, respectively, obtained by conjugations via 2z, 2x and 2y, respectively,

so that:
D3q = 2zD3p2z, D3r = 2xD3p2x and D3s = 2yD3p2y.
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Appendix D

Standard polynomials:

ξ = 1√
2
(x + iy) η = 1√

2
(x − iy)

ξn = ( 1√
2
)n[Rn(x, y) + iIn(x, y)] ηn = ( 1√

2
)n[Rn(x, y) − iIn(x, y)]

x = R1(x, y) I1(x, y) = y

x2 − y2 = R2(x, y) I2(x, y) = 2xy

x3 − 3xy2 = R3(x, y) I3(x, y) = 3x2y − y3

x4 − 6x2y2 + y4 = R4(x, y) I4(x, y) = 4xy(x2 − y2)

x5 − 10x3y2 + 5xy4 = R5(x, y) I5(x, y) = 5x4y − 10x2y3 + y5

x6 − 15x2y4 + 15x2y4 − y6 = R6(x, y) I6(x, y) = 2xy(x2 − 3y2)(3x2 − y2)

Q(x, y, z) = x2(z4 − y4) + y2(x4 − z4) + z2(y4 − x4)

Some useful relations:

R2(y, x) = −R2(x, y) I2(y, x) = I2(x, y)

R3(y, x) = I3(x, y)

R3(x,−y) = R3(x, y) I3(x,−y) = −I3(x, y)

R3(−x, y) = −R3(x, y) I3(−x, y) = I3(x, y)

R4(y, x) = R4(x, y) I4(y, x) = −I4(x, y)

R4(x,−y) = R4(−x, y) = R4(x, y) I4(x,−y) = I4(−x, y) = −I4(x, y)

R5(y, x) = I5(x, y)

R5(x,−y) = −R5(−x, y) = R4(x, y) I5(x,−y) = −I5(−x, y) = −I5(x, y)

R6(y, x) = −R6(x, y) I6(y, x) = −I6(x, y)

R6(x,−y) = R6(−x, y) = R4(x, y) I6(x,−y) = I6(−x, y) = −I6(x, y)

Q(x, y, z) = Q(y, z, x) = Q(z, x, y) =

−Q(x, z, y) = −Q(z, x, y) = −Q(y, z, x)
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Appendix E: Labelling of Covariants and Conversion Equations

The tables in this part are given only for the following groups of proper rotations:

tetragonal trigonal hexagonal cubic

4z − C4z 3z − C3 6z − C6 23 − T

4z2x2xy − D4z 3z2x − D3x 3z2y − D3y 6z2x2y − D6 432 − O

and for tensors u, A, s and q, all of which are of even parity with respect to space
inversion i.

To each group there are assigned two tables on facing pages. The first table, called La-
belling of Covariants, assigns numerical labels to linearly independent D(α)(G)-covariants
in cases where more than one covariant of a given tensor to this irep exist. We shall illus-
trate it for the case of the tensor A. One-dimensional covariants, including invariants, are
denoted by the sans-serif letter A with two indices, the first of which is the numerical label
of an irep and the second of which is the number of the covariant. If only one covariant
of the type exists, we drop the second index. Thus A1 means an invariant, A3 means a
χ3(G)-covariant but A1,1, A1,2, A1,3 mean the first, second and third invariant and A3,1,
A3,2 mean the first and second χ3(G)-covariant. The two-dimensional D(2)(G)-covariants

are expressed as A
(2)
1 = (A2x,1, A2y,1), A

(2)
2 = (A2x,2, A2y,2), A

(2)
3 = (A2x,3, A2y,3), and so on

if more than three linearly independent D(2)(G)-covariants exist, while A(2) = (A2x, A2y)
signals that there is no other D(2)(G)-covariant. In cubic groups we use only the compo-
nents of covariants.

The table on each facing page bears the title Conversion Equations and contains Carte-
sian tensor components expressed in terms of the covariant components. If all nonin-
variant components are set to zero, we get the tensor form, invariant under the group
G. By comparison with the main tables we can see which covariant components onset
at each transition from the parent group G. Thus these components can be described as
the tensor parameters of the transition. Conversion equations are a convenient platform
from which to launch the detailed investigation of domain pairs and domain walls. The
results of such an investigation in a form which an experimentalist can use directly are in
preparation as a continuation of this work.

Conversion equations are not necessary for parent groups up to mxmymz−D2h because
Cartesian components are themselves relative invariants (this is, however, due to the
choice of group orientations). Labelling of covariants and solution of conversion equations
for other tensors and for other groups can be performed by rewriting the results of Table E
with the use of Opechowski’s magic relations, which will be considered in detail elsewhere
because they enable us to extend the current results to magnetic groups and properties.
The relations between covariants of tensors which differ only by parities with respect to
various groups of the same Laue class have already been discussed by Kopský (1979b).
These relations can also be seen from tables of covariants (Kopský, 1979a, 2001b).
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Group 4z/mz - (C4hz)

Labelling of Covariants

u1,1 = u1 + u2 u3,1 = u1 − u2

u1,2 = u3 u3,2 = u6

u(1) = (u1x, u1y) = (u4,−u5)

A1,1 = A14 − A25 A3,1 = A14 + A25

A1,2 = A31 + A32 A3,2 = A31 − A32

A1,3 = A15 + A24 A3,3 = A15 − A24

A1,4 = A33 A3,4 = A36

A
(1)
1 = (A1x,1, A1y,1) = (A11, A22) A

(1)
3 = (A1x,3, A1y,3) = (A13, A23)

A
(1)
2 = (A1x,2, A1y,2) = (A12, A21) A

(1)
4 = (A1x,4, A1y,4) = (A26, A16)

A
(1)
5 = (A1x,5, A1y,5) = (A35, A34)

s1,1 = s11 + s22 s3,1 = s11 − s22

s1,2 = s13 + s23 s3,2 = s13 − s23

s1,3 = s44 + s55 s3,3 = s44 − s55

s1,4 = s16 − s26 s3,4 = s16 + s26

s1,5 = s12 s3,5 = s36

s1,6 = s33 s3,6 = s45

s1,7 = s66

s
(1)
1 = (s1x,1, s1y,1) = (s14,−s25) s

(1)
3 = (s1x,3, s1y,3) = (s34,−s35)

s
(1)
2 = (s1x,2, s1y,2) = (s24,−s15) s

(1)
4 = (s1x,4, s1y,4) = (s56,−s46)

q1,1 = q13 + q23 q3,1 = q13 − q23

q1,2 = q16 − q26 q3,2 = q16 + q26

q1,3 = q45 q3,3 = q12

q3,4 = q36

q
(1)
1 = (q1x,1, q1y,1) = (q14,−q25) q

(1)
3 = (q1x,3, q1y,3) = (q34,−q35)

q
(1)
2 = (q1x,2, q1y,2) = (q24,−q15) q

(1)
4 = (q1x,4, q1y,4) = (q56,−q46)
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Conversion Equations

u1 = 1
2
(u1,1 + u3,1) u2 = 1

2
(u1,1 − u3,1) u3 = u1,2

u4 = u1x u5 = −u1y u6 = u3,2

A11 = A1x,1 A22 = A1y,1 A12 = A1x,2 A21 = A1y,2

A13 = A1x,3 A23 = A1y,3 A26 = A1x,4 A16 = A1y,4

A35 = A1x,5 A34 = A1y,5 A33 = A1,4 A36 = A3,4

A14 = 1
2
(A1,1 + A3,1) A25 = 1

2
(−A1,1 + A3,1)

A31 = 1
2
(A1,2 + A3,2) A32 = 1

2
(A1,2 − A3,2)

A15 = 1
2
(A1,3 + A3,3) A24 = 1

2
(A1,3 − A3,3)

s11 = 1
2
(s1,1 + s3,1) s22 = 1

2
(s1,1 − s3,1) s13 = 1

2
(s1,2 + s3,2) s23 = 1

2
(s1,2 − s3,2)

s44 = 1
2
(s1,3 + s3,3) s55 = 1

2
(s1,3 − s3,3) s16 = 1

2
(s1,4 + s3,4) s26 = 1

2
(−s1,4 + s3,4)

s12 = s1,5 s33 = s1,6 s66 = s1,7 s36 = s3,5 s45 = s3,6

s14 = s1x,1 s25 = −s1y,1 s24 = s1x,2 s15 = −s1y,2

s34 = s1x,3 s35 = −s1y,3 s56 = s1x,4 s46 = −s1y,4

q13 = 1
2
(q1,1 + q3,1) q23 = 1

2
(q1,1 − q3,1) q16 = 1

2
(q1,2 + q3,2) q26 = 1

2
(−q1,2 + q3,2)

q45 = q1,3 q12 = q3,3 q36 = q3,4

q14 = q1x,1 q25 = −q1y,1 q24 = q1x,2 q15 = −q1y,2

q34 = q1x,3 q35 = −q1y,3 q56 = q1x,4 q46 = −q1y,4
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Group 4z2x2xy - (D4z)

Labelling of Covariants

u1,1 = u1 + u2 u3 = u1 − u2 u4 = u6

u1,2 = u3 u(1) = (u1x, u1y) = (u4,−u5)

A1 = A14 − A25 A2,1 = A31 + A32 A3,1 = A14 + A25 A4,1 = A31 − A32

A2,2 = A15 + A24 A3,2 = A36 A4,2 = A15 − A24

A2,3 = A33

A
(1)
1 = (A1x,1, A1y,1) = (A11, A22) A

(1)
3 = (A1x,3, A1y,3) = (A13, A23)

A
(1)
2 = (A1x,2, A1y,2) = (A12, A21) A

(1)
4 = (A1x,4, A1y,4) = (A26, A16)

A
(1)
5 = (A1x,5, A1y,5) = (A35, A34)

s1,1 = s11 + s22 s2,1 = s16 − s26 s3,1 = s11 − s22 s4,1 = s16 + s26

s1,2 = s13 + s23 s3,2 = s13 − s23 s4,2 = s36

s1,3 = s44 + s55 s3,3 = s44 − s55 s4,3 = s45

s1,4 = s12

s1,5 = s33 s
(1)
1 = (s1x,1, s1y,1) = (s14,−s25)

s1,6 = s66 s
(1)
2 = (s1x,2, s1y,2) = (s24,−s15)

s
(1)
3 = (s1x,3, s1y,3) = (s34,−s35)

s
(1)
4 = (s1x,4, s1y,4) = (s56,−s46)

q1,1 = q13 + q23 q2,1 = q16 − q26 q3,1 = q13 − q23 q4,1 = q16 + q26

q2,2 = q45 q3,2 = q12 q4,2 = q36

q
(1)
1 = (q1x,1, q1y,1) = (q14,−q25)

q
(1)
2 = (q1x,2, q1y,2) = (q24,−q15)

q
(1)
3 = (q1x,3, q1y,3) = (q34,−q35)

q
(1)
4 = (q1x,4, q1y,4) = (q56,−q46)
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Conversion Equations

u1 = 1
2
(u1,1 + u3) u2 = 1

2
(u1,1 − u3) u3 = u1,2

u4 = u1x u5 = −u1y u6 = u4

A11 = A1x,1 A22 = A1y,1 A12 = A1x,2 A21 = A1y,2

A13 = A1x,3 A23 = A1y,3 A26 = A1x,4 A16 = A1y,4

A35 = A1x,5 A34 = A1y,5 A33 = A2,3 A36 = A3,2

A14 = 1
2
(A1 + A3,1) A25 = 1

2
(−A1 + A3,1)

A31 = 1
2
(A2,1 + A4,1) A32 = 1

2
(A2,1 − A4,1)

A15 = 1
2
(A2,2 + A4,2) A24 = 1

2
(A2,2 − A4,2)

s11 = 1
2
(s1,1 + s3,1) s22 = 1

2
(s1,1 − s3,1) s13 = 1

2
(s1,2 + s3,2) s23 = 1

2
(s1,2 − s3,2)

s44 = 1
2
(s1,3 + s3,3) s55 = 1

2
(s1,3 − s3,3) s16 = 1

2
(s2,1 + s4,1) s26 = 1

2
(−s2,1 + s4,1)

s12 = s1,4 s33 = s1,5 s66 = s1,6 s36 = s4,2 s45 = s4,3

s14 = s1x,1 s25 = −s1y,1 s24 = s1x,2 s15 = −s1y,2

s34 = s1x,3 s35 = −s1y,3 s56 = s1x,4 s46 = −s1y,4

q13 = 1
2
(q1,1 + q3,1) q23 = 1

2
(q1,1 − q3,1) q16 = 1

2
(q2,1 + q4,1) q26 = 1

2
(−q2,1 + q4,1)

q45 = q2,2 q12 = q3,2 q36 = q4,2

q14 = q1x,1 q25 = −q1y,1 q24 = q1x,2 q15 = −q1y,2

q34 = q1x,3 q35 = −q1y,3 q56 = q1x,4 q46 = −q1y,4
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Group 3z - (C3)

Labelling of Covariants

uo,1 = u1 + u2 u
(1)
1 = (u1x,1, u1y,1) = (u1 − u2,−2u6)

uo,2 = u3 u
(1)
2 = (u1x,2, u1y,2) = (u4,−u5)

A1,1 = A14 − A25 A
(1)
1 = (A1x,1, A1y,1) = (A11 + A12, A22 + A21)

A1,2 = A31 + A32 A
(1)
2 = (A1x,2, A1y,2) = (A11 + A26, A22 + A16)

A1,3 = A15 + A24 A
(1)
3 = (A1x,3, A1y,3) = (A13, A23)

A1,4 = A33 A
(1)
4 = (A1x,4, A1y,4) = (A35, A34)

A1,5 = A11 − A12 − 2A26 A
(1)
5 = (A1x,5, A1y,5) = (2A36, A31 − A32)

A1,6 = A22 − A21 − 2A16 A
(1)
6 = (A1x,6, A1y,6) = (A14 + A25, A15 − A24)

s1,1 = s11 + s22 + 2s12 s
(1)
1 = (s1x,1, s1y,1) = (s14 + s24,−s15 − s25)

s1,2 = s11 + s22 + 2s66 s
(1)
2 = (s1x,2, s1y,2) = (s14 − s56, s46 − s25)

s1,3 = s13 + s23 s
(1)
3 = (s1x,3, s1y,3) = (s34,−s35)

s1,4 = s44 + s55 s
(1)
4 = (s1x,4, s1y,4) = [s11 − s22,−2(s16 + s26)]

s1,5 = s33 s
(1)
5 = (s1x,5, s1y,5) = [s11 + s22 − 2s12 − 4s66, 4(s16 − s26)]

s1,6 = s14 − s24 + 2s56 s
(1)
6 = (s1x,6, s1y,6) = (s13 − s23,−2s36)

s1,7 = s15 − s25 − 2s46 s
(1)
7 = (s1x,7, s1y,7) = (s44 − s55, 2s45)

q1,1 = q13 + q23 q
(1)
1 = (q1x,1, q1y,1) = (q34,−q35)

q1,2 = q16 − q26 q
(1)
2 = (q1x,2, q1y,2) = (q14 + q24,−q15 − q25)

q1,3 = q45 q
(1)
3 = (q1x,3, q1y,3) = (q14 + q56,−q46 − q25)

q1,4 = q14 − q24 − 2q56 q
(4)
4 = (q1x,4, q1y,4) = (q12, q16 + q26)

q1,5 = q15 − q25 + 2q46 q
(1)
5 = (q1x,5, q1y,5) = (q13 − q23, 2q36)
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Conversion Equations

u1 = 1
2
(uo,1 + u1x,1) u2 = 1

2
(uo,1 − u1x,1) u3 = uo,2

u4 = u1x,2 u5 = −u1y,2 u6 = −1
2
u1y,1

A11 = 1
4
A1,5 +1

4
A1x,1 +1

2
A1x,2 A22 = 1

4
A1,6 +1

4
A1y,1 +1

2
A1y,2

A12 = −1
4
A1,5 +3

4
A1x,1 −1

2
A1x,2 A21 = −1

4
A1,6 +3

4
A1y,1 −1

2
A1y,2

A26 = −1
4
A1,5 −1

4
A1x,1 +1

2
A1x,2 A16 = −1

4
A1,6 −1

4
A1y,1 +1

2
A1y,2

A14 = 1
2
(A1,1 + A1x,6) A31 = 1

2
(A1,2 + A1y,5) A15 = 1

2
(A1,3 + A1y,6)

A25 = 1
2
(−A1,1 + A1x,6) A32 = 1

2
(A1,2 − A1y,5) A24 = 1

2
(A1,3 − A1y,6)

A33 = A1,4 A36 = 1
2
A1x,5 A13 = A1x,3 A23 = A1y,3 A35 = A1x,4 A34 = A1y,4

s11 = 1
8
s1,1 +1

4
s1,2 +1

2
s1x,4 +1

8
s1x,5

s22 = 1
8
s1,1 +1

4
s1,2 −1

2
s1x,4 +1

8
s1x,5

s12 = 3
8
s1,1 −1

4
s1,2 −1

8
s1x,5

s66 = −1
8
s1,1 +1

4
s1,2 −1

8
s1x,5

s14 = 1
4
s1,6 +1

4
s1x,1 +1

2
s1x,2 s15 = 1

4
s1,7 −3

4
s1y,1 +1

2
s1y,2

s24 = −1
4
s1,6 +3

4
s1x,1 −1

2
s1x,2 s25 = −1

4
s1,7 −1

4
s1y,1 −1

2
s1y,2

s56 = 1
4
s1,6 +1

4
s1x,1 −1

2
s1x,2 s46 = −1

4
s1,7 −1

4
s1y,1 +1

2
s1y,2

s13 = 1
2
(s1,3 + s1x,6) s23 = 1

2
(s1,3 − s1x,6)

s44 = 1
2
(s1,4 + s1x,7) s55 = 1

2
(s1,4 − s1x,7)

s16 = −1
4
s1y,4 + 1

8
s1y,5 s26 = −1

4
s1y,4 − 1

8
s1y,5

s33 = s1,5 s34 = s1x,3 s35 = −s1y,3 s36 = −1
2
s1y,6 s45 = 1

2
s1y,7

q13 = 1
2
(q1,1 + q1x,5) q16 = 1

2
(q1,2 + q1y,4)

q23 = 1
2
(q1,1 − q1x,5) q26 = −1

2
(q1,2 − q1y,4)

q14 = 1
4
q1,4 +1

4
q1x,2 +1

2
q1x,3 q15 = 1

4
q1,5 −3

4
q1y,2 +1

2
q1y,3

q24 = −1
4
q1,4 +3

4
q1x,2 −1

2
q1x,3 q25 = −1

4
q1,5 −1

4
q1y,2 −1

2
q1y,3

q56 = −1
4
q1,4 −1

4
q1x,2 +1

2
q1x,3 q46 = 1

4
q1,5 +1

4
q1y,2 −1

2
q1y,3

q45 = q1,3 q34 = q1x,1 q35 = −q1y,1 q12 = q1x,4 q36 = 1
2
q1y,5
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Group 3z2x - (D3x)

Labelling of Covariants

uo,1 = u1 + u2 u
(1)
1 = (u1x,1, u1y,1) = (u4,−u5)

uo,2 = u3 u
(1)
2 = (u1x,2, u1y,2) = (u1 − u2,−2u6)

A1,1 = A14 − A25 A
(1)
1 = (A1x,1, A1y,1) = (A11 + A12, A22 + A21)

A1,2 = A11 − A12 − 2A26 A
(1)
2 = (A1x,2, A1y,2) = (A11 + A26, A22 + A16)

A
(1)
3 = (A1x,3, A1y,3) = (A13, A23)

A2,1 = A31 + A32 A
(1)
4 = (A1x,4, A1y,4) = (A35, A34)

A2,2 = A15 + A24

A2,3 = A33 A
(1)
5 = (A1x,5, A1y,5) = (2A36, A31 − A32)

A2,4 = A22 − A21 − 2A16 A
(1)
6 = (A1x,6, A1y,6) = (A14 + A25, A15 − A24)

s1,1 = s11 + s22 + 2s12 s
(1)
1 = (s1x,1, s1y,1) = (s14 + s24,−s15 − s25)

s1,2 = s11 + s22 + 2s66 s
(1)
2 = (s1x,2, s1y,2) = (s14 − s56, s46 − s25)

s1,3 = s13 + s23 s
(1)
3 = (s1x,3, s1y,3) = (s34,−s35)

s1,4 = s44 + s55

s1,5 = s33 s
(1)
4 = (s1x,4, s1y,4) = [s11 − s22,−2(s16 + s26)]

s1,6 = s14 − s24 + 2s56 s
(1)
5 = (s1x,5, s1y,5) = [s11 + s22 − 2s12 − 4s66, 4(s16 − s26)]

s
(1)
6 = (s1x,6, s1y,6) = (s13 − s23,−2s36)

s2 = s15 − s25 − 2s46 s
(1)
7 = (s1x,7, s1y,7) = (s44 − s55, 2s45)

q1,1 = q13 + q23 q
(1)
1 = (q1x,1, q1y,1) = (q34,−q35)

q1,2 = q14 − q24 − 2q56 q
(1)
2 = (q1x,2, q1y,2) = (q14 + q24,−q15 − q25)

q
(1)
3 = (q1x,3, q1y,3) = (q14 + q56,−q46 − q25)

q2,1 = q16 − q26

q2,2 = q45 q
(1)
4 = (q1x,4, q1y,4) = (q12, q16 + q26)

q2,3 = q15 − q25 + 2q46 q
(1)
5 = (q1x,5, q1y,5) = (q13 − q23, 2q36)
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Conversion Equations

u1 = 1
2
(uo,1 + u1x,2) u2 = 1

2
(uo,1 − u1x,2) u3 = uo,2

u4 = u1x,1 u5 = −u1y,1 u6 = −1
2
u1y,2

A11 = 1
4
A1,2 +1

4
A1x,1 +1

2
A1x,2 A22 = 1

4
A2,4 +1

4
A1y,1 +1

2
A1y,2

A12 = −1
4
A1,2 +3

4
A1x,1 −1

2
A1x,2 A21 = −1

4
A2,4 +3

4
A1y,1 −1

2
A1y,2

A26 = −1
4
A1,2 −1

4
A1x,1 +1

2
A1x,2 A16 = −1

4
A2,4 −1

4
A1y,1 +1

2
A1y,2

A14 = 1
2
(A1,1 + A1x,6) A31 = 1

2
(A2,1 + A1y,5) A15 = 1

2
(A2,2 + A1y,6)

A25 = 1
2
(−A1,1 + A1x,6) A32 = 1

2
(A2,1 − A1y,5) A24 = 1

2
(A2,2 − A1y,6)

A33 = A2,3 A36 = 1
2
A1x,5 A13 = A1x,3 A23 = A1y,3 A35 = A1x,4 A34 = A1y,4

s11 = 1
8
s1,1 +1

4
s1,2 +1

2
s1x,4 +1

8
s1x,5

s22 = 1
8
s1,1 +1

4
s1,2 −1

2
s1x,4 +1

8
s1x,5

s12 = 3
8
s1,1 −1

4
s1,2 −1

8
s1x,5

s66 = −1
8
s1,1 +1

4
s1,2 −1

8
s1x,5

s14 = 1
4
s1,6 +1

4
s1x,1 +1

2
s1x,2 s15 = 1

4
s2 −3

4
s1y,1 +1

2
s1y,2

s24 = −1
4
s1,6 +3

4
s1x,1 −1

2
s1x,2 s25 = −1

4
s2 −1

4
s1y,1 −1

2
s1y,2

s56 = 1
4
s1,6 +1

4
s1x,1 −1

2
s1x,2 s46 = −1

4
s2 −1

4
s1y,1 +1

2
s1y,2

s13 = 1
2
(s1,3 + s1x,6) s23 = 1

2
(s1,3 − s1x,6)

s44 = 1
2
(s1,4 + s1x,7) s55 = 1

2
(s1,4 − s1x,7)

s16 = −1
4
s1y,4 + 1

8
s1y,5 s26 = −1

4
s1y,4 − 1

8
s1y,5

s33 = s1,5 s34 = s1x,3 s35 = −s1y,3 s36 = −1
2
s1y,6 s45 = 1

2
s1y,7

q13 = 1
2
(q1,1 + q1x,5) q16 = 1

2
(q2,1 + q1y,4)

q23 = 1
2
(q1,1 − q1x,5) q26 = −1

2
(q2,1 − q1y,4)

q14 = 1
4
q1,2 +1

4
q1x,2 +1

2
q1x,3 q15 = 1

4
q2,3 −3

4
q1y,2 +1

2
q1y,3

q24 = −1
4
q1,2 +3

4
q1x,2 −1

2
q1x,3 q25 = −1

4
q2,3 −1

4
q1y,2 −1

2
q1y,3

q56 = −1
4
q1,2 −1

4
q1x,2 +1

2
q1x,3 q46 = 1

4
q2,3 +1

4
q1y,2 −1

2
q1y,3

q45 = q2,2 q34 = q1x,1 q35 = −q1y,1 q12 = q1x,4 q36 = 1
2
q1y,5
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Group 3z2y - (D3y)

Labelling of Covariants

uo,1 = u1 + u2 u
(1)
1 = (u1x,1, u1y,1) = (u4,−u5)

uo,2 = u3 u
(1)
2 = (u1x,2, u1y,2) = (2u6, u1 − u2)

A1,1 = A14 − A25 A
(1)
1 = (A1x,1, A1y,1) = (A11 + A12, A22 + A21)

A1,2 = A22 − A21 − 2A16 A
(1)
2 = (A1x,2, A1y,2) = (A11 + A26, A22 + A16)

A
(1)
3 = (A1x,3, A1y,3) = (A13, A23)

A2,1 = A31 + A32 A
(1)
4 = (A1x,4, A1y,4) = (A35, A34)

A2,2 = A15 + A24

A2,3 = A33 A
(1)
5 = (A1x,5, A1y,5) = (A32 − A31, 2A36)

A2,4 = A11 − A12 − 2A26 A
(1)
6 = (A1x,6, A1y,6) = (A24 − A15, A14 + A25)

s1,1 = s11 + s22 + 2s12 s
(1)
1 = (s1x,1, s1y,1) = (s14 + s24,−s15 − s25)

s1,2 = s11 + s22 + 2s66 s
(1)
2 = (s1x,2, s1y,2) = (s14 − s56, s46 − s25)

s1,3 = s13 + s23 s
(1)
3 = (s1x,3, s1y,3) = (s34,−s35)

s1,4 = s44 + s55

s1,5 = s33 s
(1)
4 = (s1x,4, s1y,4) = [2(s16 + s26), s11 − s22]

s1,6 = s15 − s25 − 2s46 s
(1)
5 = (s1x,5, s1y,5) = [4(s26 − s16), s11 + s22 − 2s12 − 4s66]

s
(1)
6 = (s1x,6, s1y,6) = (2s36, s13 − s23)

s2 = s14 − s24 + 2s56 s
(1)
7 = (s1x,7, s1y,7) = (2s45, s55 − s44)

q1,1 = q13 + q23 q
(1)
1 = (q1x,1, q1y,1) = (q34,−q35)

q1,2 = q15 − q25 + 2q46 q
(1)
2 = (q1x,2, q1y,2) = (q14 + q24,−q15 − q25)

q
(1)
3 = (q1x,3, q1y,3) = (q14 + q56,−q46 − q25)

q2,1 = q16 − q26

q2,2 = q45 q
(1)
4 = (q1x,4, q1y,4) = (q16 + q26,−q12)

q2,3 = q14 − q24 − 2q56 q
(1)
5 = (q1x,5, q1y,5) = (2q36, q23 − q13)
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Conversion Equations

u1 = 1
2
(uo,1 + u1y,2) u2 = 1

2
(uo,1 − u1y,2) u3 = uo,2

u4 = u1x,1 u5 = −u1y,1 u6 = 1
2
u1x,2

A11 = 1
4
A2,4 +1

4
A1x,1 +1

2
A1x,2 A22 = 1

4
A1,2 +1

4
A1y,1 +1

2
A1y,2

A12 = −1
4
A2,4 +3

4
A1x,1 −1

2
A1x,2 A21 = −1

4
A1,2 +3

4
A1y,1 −1

2
A1y,2

A26 = −1
4
A2,4 −1

4
A1x,1 +1

2
A1x,2 A16 = −1

4
A1,2 −1

4
A1y,1 +1

2
A1y,2

A14 = 1
2
(A1,1 + A1y,6) A31 = 1

2
(A2,1 − A1x,5) A15 = 1

2
(A2,2 − A1x,6)

A25 = 1
2
(−A1,1 + A1y,6) A32 = 1

2
(A2,1 + A1x,5) A24 = 1

2
(A2,2 + A1x,6)

A33 = A2,3 A36 = 1
2
A1y,5 A13 = A1x,3 A23 = A1y,3 A35 = A1x,4 A34 = A1y,4

s11 = 1
8
s1,1 +1

4
s1,2 +1

2
s1y,4 +1

8
s1y,5

s22 = 1
8
s1,1 +1

4
s1,2 −1

2
s1y,4 +1

8
s1y,5

s12 = 3
8
s1,1 −1

4
s1,2 −1

8
s1y,5

s66 = −1
8
s1,1 +1

4
s1,2 −1

8
s1y,5

s14 = 1
4
s2 +1

4
s1x,1 +1

2
s1x,2 s15 = 1

4
s1,6 −3

4
s1y,1 +1

2
s1y,2

s24 = −1
4
s2 +3

4
s1x,1 −1

2
s1x,2 s25 = −1

4
s1,6 −1

4
s1y,1 −1

2
s1y,2

s56 = 1
4
s2 +1

4
s1x,1 −1

2
s1x,2 s46 = −1

4
s1,6 −1

4
s1y,1 +1

2
s1y,2

s13 = 1
2
(s1,3 + s1y,6) s23 = 1

2
(s1,3 − s1y,6)

s44 = 1
2
(s1,4 − s1y,7) s55 = 1

2
(s1,4 + s1y,7)

s16 = 1
4
s1x,4 − 1

8
s1x,5 s26 = 1

4
s1x,4 + 1

8
s1x,5

s33 = s1,5 s34 = s1x,3 s35 = −s1y,3 s36 = 1
2
s1x,6 s45 = 1

2
s1x,7

q13 = 1
2
(q1,1 − q1y,5) q16 = 1

2
(q2,1 + q1x,4)

q23 = 1
2
(q1,1 + q1y,5) q26 = −1

2
(q2,1 − q1x,4)

q14 = 1
4
q2,3 +1

4
q1x,2 +1

2
q1x,3 q15 = 1

4
q1,2 −3

4
q1y,2 +1

2
q1y,3

q24 = −1
4
q2,3 +3

4
q1x,2 −1

2
q1x,3 q25 = −1

4
q1,2 −1

4
q1y,2 −1

2
q1y,3

q56 = −1
4
q2,3 −1

4
q1x,2 +1

2
q1x,3 q46 = 1

4
q1,2 +1

4
q1y,2 −1

2
q1y,3

q45 = q2,2 q34 = q1x,1 q35 = −q1y,1 q12 = −q1y,4 q36 = 1
2
q1x,5
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Group 6z - (C6)

Labelling of Covariants

uo,1 = u1 + u2 u(1) = (u1x, u1y) = (u4,−u5)

uo,2 = u3 u(2) = (u2x, u2y) = (u1 − u2, 2u6)

A1,1 = A14 − A25 A
(1)
1 = (A1x,1, A1y,1) = (A11 + A12, A22 + A21)

A1,2 = A31 + A32 A
(1)
2 = (A1x,2, A1y,2) = (A11 + A26, A22 + A16)

A1,3 = A15 + A24 A
(1)
3 = (A1x,3, A1y,3) = (A13, A23)

A1,4 = A33 A
(1)
4 = (A1x,4, A1y,4) = (A35, A34)

A3,1 = A11 − A12 − 2A26 A
(2)
1 = (A2x,1, A2y,1) = (2A36, A32 − A31)

A3,2 = A22 − A21 − 2A16 A
(2)
2 = (A2x,2, A2y,2) = (A14 + A25, A24 − A15)

s1,1 = s11 + s22 + 2s12 s
(1)
1 = (s1x,1, s1y,1) = (s14 + s24,−s15 − s25)

s1,2 = s11 + s22 + 2s66 s
(1)
2 = (s1x,2, s1y,2) = (s14 − s56, s46 − s25)

s1,3 = s13 + s23 s
(1)
3 = (s1x,3, s1y,3) = (s34,−s35)

s1,4 = s44 + s55

s1,5 = s33 s
(2)
1 = (s2x,1, s2y,1) = [s11 − s22, 2(s16 + s26)]

s
(2)
2 = (s2x,2, s2y,2) = [s11 + s22 − 2s12 − 4s66, 4(s26 − s16)]

s3,1 = s14 − s24 + 2s56 s
(2)
3 = (s2x,3, s2y,3) = (s13 − s23, 2s36)

s3,2 = s15 − s25 − 2s46 s
(2)
4 = (s2x,4, s2y,4) = (s44 − s55,−2s45)

q1,1 = q13 + q23 q
(1)
1 = (q1x,1, q1y,1) = (q34,−q35)

q1,2 = q16 − q26 q
(1)
2 = (q1x,2, q1y,2) = (q14 + q24,−q15 − q25)

q1,3 = q45 q
(1)
3 = (q1x,3, q1y,3) = (q14 + q56,−q46 − q25)

q3,1 = q14 − q24 − 2q56 q
(2)
1 = (q2x,1, q2y,1) = (q12,−q16 − q26)

q3,2 = q15 − q25 + 2q46 q
(2)
2 = (q2x,2, q2y,2) = (q13 − q23,−2q36)
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Conversion Equations

u1 = 1
2
(uo,1 + u2x) u2 = 1

2
(uo,1 − u2x) u3 = uo,2

u4 = u1x u5 = −u1y u6 = 1
2
u2y

A11 = 1
4
A3,1 +1

4
A1x,1 +1

2
A1x,2 A22 = 1

4
A3,2 +1

4
A1y,1 +1

2
A1y,2

A12 = −1
4
A3,1 +3

4
A1x,1 −1

2
A1x,2 A21 = −1

4
A3,2 +3

4
A1y,1 −1

2
A1y,2

A26 = −1
4
A3,1 −1

4
A1x,1 +1

2
A1x,2 A16 = −1

4
A3,2 −1

4
A1y,1 +1

2
A1y,2

A14 = 1
2
(A1,1 + A2x,2) A31 = 1

2
(A1,2 − A2y,1) A15 = 1

2
(A1,3 − A2y,2)

A25 = 1
2
(−A1,1 + A2x,2) A32 = 1

2
(A1,2 + A2y,1) A24 = 1

2
(A1,3 + A2y,2)

A33 = A1,4 A36 = 1
2
A2x,1 A13 = A1x,3 A23 = A1y,3 A35 = A1x,4 A34 = A1y,4

s11 = 1
8
s1,1 +1

4
s1,2 +1

2
s2x,1 +1

8
s2x,2

s22 = 1
8
s1,1 +1

4
s1,2 −1

2
s2x,1 +1

8
s2x,2

s12 = 3
8
s1,1 −1

4
s1,2 −1

8
s2x,2

s66 = −1
8
s1,1 +1

4
s1,2 −1

8
s2x,2

s14 = 1
4
s3,1 +1

4
s1x,1 +1

2
s1x,2 s15 = 1

4
s3,2 −3

4
s1y,1 +1

2
s1y,2

s24 = −1
4
s3,1 +3

4
s1x,1 −1

2
s1x,2 s25 = −1

4
s3,2 −1

4
s1y,1 −1

2
s1y,2

s56 = 1
4
s3,1 +1

4
s1x,1 −1

2
s1x,2 s46 = −1

4
s3,2 −1

4
s1y,1 +1

2
s1y,2

s13 = 1
2
(s1,3 + s2x,3) s23 = 1

2
(s1,3 − s2x,3)

s44 = 1
2
(s1,4 + s2x,4) s55 = 1

2
(s1,4 − s2x,4)

s16 = 1
4
s2y,1 − 1

8
s2y,2 s26 = 1

4
s2y,1 + 1

8
s2y,2

s33 = s1,5 s34 = s1x,3 s35 = −s1y,3 s36 = 1
2
s2y,3 s45 = −1

2
s2y,4

q13 = 1
2
(q1,1 + q2x,2) q16 = 1

2
(q1,2 − q2y,1)

q23 = 1
2
(q1,1 − q2x,2) q26 = −1

2
(q1,2 + q2y,1)

q14 = 1
4
q3,1 +1

4
q1x,2 +1

2
q1x,3 q15 = 1

4
q3,2 −3

4
q1y,2 +1

2
q1y,3

q24 = −1
4
q3,1 +3

4
q1x,2 −1

2
q1x,3 q25 = −1

4
q3,2 −1

4
q1y,2 −1

2
q1y,3

q56 = −1
4
q3,1 −1

4
q1x,2 +1

2
q1x,3 q46 = 1

4
q3,2 +1

4
q1y,2 −1

2
q1y,3

q45 = q1,3 q34 = q1x,1 q35 = −q1y,1 q12 = q2x,1 q36 = −1
2
q2y,2
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Group 6z2x2y - (D6)

Labelling of Covariants

uo,1 = u1 + u2 u(1) = (u1x, u1y) = (u4,−u5)

uo,2 = u3 u(2) = (u2x, u2y) = (u1 − u2, 2u6)

A1 = A14 − A25 A
(1)
1 = (A1x,1, A1y,1) = (A11 + A12, A22 + A21)

A
(1)
2 = (A1x,2, A1y,2) = (A11 + A26, A22 + A16)

A2,1 = A31 + A32 A
(1)
3 = (A1x,3, A1y,3) = (A13, A23)

A2,2 = A15 + A24 A
(1)
4 = (A1x,4, A1y,4) = (A35, A34)

A2,3 = A33

A3 = A11 − A12 − 2A26 A
(2)
1 = (A2x,1, A2y,1) = (2A36, A32 − A31)

A4 = A22 − A21 − 2A16 A
(2)
2 = (A2x,2, A2y,2) = (A14 + A25, A24 − A15)

s1,1 = s11 + s22 + 2s12 s
(1)
1 = (s1x,1, s1y,1) = (s14 + s24,−s15 − s25)

s1,2 = s11 + s22 + 2s66 s
(1)
2 = (s1x,2, s1y,2) = (s14 − s56, s46 − s25)

s1,3 = s13 + s23 s
(1)
3 = (s1x,3, s1y,3) = (s34,−s35)

s1,4 = s44 + s55

s1,5 = s33 s
(2)
1 = (s2x,1, s2y,1) = [s11 − s22, 2(s16 + s26)]

s
(2)
2 = (s2x,2, s2y,2) = [s11 + s22 − 2s12 − 4s66, 4(s26 − s16)]

s3 = s14 − s24 + 2s56 s
(2)
3 = (s2x,3, s2y,3) = (s13 − s23, 2s36)

s4 = s15 − s25 − 2s46 s
(2)
4 = (s2x,4, s2y,4) = (s44 − s55,−2s45)

q1 = q13 + q23 q
(1)
1 = (q1x,1, q1y,1) = (q34,−q35)

q
(1)
2 = (q1x,2, q1y,2) = (q14 + q24,−q15 − q25)

q2,1 = q16 − q26 q
(1)
3 = (q1x,3, q1y,3) = (q14 + q56,−q46 − q25)

q2,2 = q45

q3 = q14 − q24 − 2q56 q
(2)
1 = (q2x,1, q2y,1) = (q12,−q16 − q26)

q4 = q15 − q25 + 2q46 q
(2)
2 = (q2x,2, q2y,2) = (q13 − q23,−2q36)
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Conversion Equations

u1 = 1
2
(uo,1 + u2x) u2 = 1

2
(uo,1 − u2x) u3 = uo,2

u4 = u1x u5 = −u1y u6 = 1
2
u2y

A11 = 1
4
A3 +1

4
A1x,1 +1

2
A1x,2 A22 = 1

4
A4 +1

4
A1y,1 +1

2
A1y,2

A12 = −1
4
A3 +3

4
A1x,1 −1

2
A1x,2 A21 = −1

4
A4 +3

4
A1y,1 −1

2
A1y,2

A26 = −1
4
A3 −1

4
A1x,1 +1

2
A1x,2 A16 = −1

4
A4 −1

4
A1y,1 +1

2
A1y,2

A14 = 1
2
(A1 + A2x,2) A31 = 1

2
(A2,1 − A2y,1) A15 = 1

2
(A2,2 − A2y,2)

A25 = 1
2
(−A1 + A2x,2) A32 = 1

2
(A2,1 + A2y,1) A24 = 1

2
(A2,2 + A2y,2)

A33 = A2,3 A36 = 1
2
A2x,1 A13 = A1x,3 A23 = A1y,3 A35 = A1x,4 A34 = A1y,4

s11 = 1
8
s1,1 +1

4
s1,2 +1

2
s2x,1 +1

8
s2x,2

s22 = 1
8
s1,1 +1

4
s1,2 −1

2
s2x,1 +1

8
s2x,2

s12 = 3
8
s1,1 −1

4
s1,2 −1

8
s2x,2

s66 = −1
8
s1,1 +1

4
s1,2 −1

8
s2x,2

s14 = 1
4
s3 +1

4
s1x,1 +1

2
s1x,2 s15 = 1

4
s4 −3

4
s1y,1 +1

2
s1y,2

s24 = −1
4
s3 +3

4
s1x,1 −1

2
s1x,2 s25 = −1

4
s4 −1

4
s1y,1 −1

2
s1y,2

s56 = 1
4
s3 +1

4
s1x,1 −1

2
s1x,2 s46 = −1

4
s4 −1

4
s1y,1 +1

2
s1y,2

s13 = 1
2
(s1,3 + s2x,3) s23 = 1

2
(s1,3 − s2x,3)

s44 = 1
2
(s1,4 + s2x,4) s55 = 1

2
(s1,4 − s2x,4)

s16 = 1
4
s2y,1 − 1

8
s2y,2 s26 = 1

4
s2y,1 + 1

8
s2y,2

s33 = s1,5 s34 = s1x,3 s35 = −s1y,3 s36 = 1
2
s2y,3 s45 = −1

2
s2y,4

q13 = 1
2
(q1 + q2x,2) q16 = 1

2
(q2,1 − q2y,1)

q23 = 1
2
(q1 − q2x,2) q26 = −1

2
(q2,1 + q2y,1)

q14 = 1
4
q3 +1

4
q1x,2 +1

2
q1x,3 q15 = 1

4
q4 −3

4
q1y,2 +1

2
q1y,3

q24 = −1
4
q3 +3

4
q1x,2 −1

2
q1x,3 q25 = −1

4
q4 −1

4
q1y,2 −1

2
q1y,3

q56 = −1
4
q3 −1

4
q1x,2 +1

2
q1x,3 q46 = 1

4
q4 +1

4
q1y,2 −1

2
q1y,3

q45 = q2,2 q34 = q1x,1 q35 = −q1y,1 q12 = q2x,1 q36 = −1
2
q2y,2
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Group 23 - (T )

Labelling of Covariants

uo = u1 + u2 + u3 u(3) = (u3x, u3y) = [u3 − 1
2
(u1 + u2),

√
3

2
(u1 − u2)]

u(1) = (u1x, u1y, u1z) = (u4, u5, u6)

A1 = A14 + A25 + A36 A(3) = (A3x, A3y) = [
√

3
2

(A14 − A25),
1
2
(A14 + A25) − A36]

A
(1)
1 = (A1x,1, A1y,1, A1z,1) = (A13, A21, A32)

A
(1)
2 = (A1x,2, A1y,2, A1z,2) = (A35, A16, A24)

A
(1)
3 = (A1x,3, A1y,3, A1z,3) = (A11, A22, A33)

A
(1)
4 = (A1x,4, A1y,4, A1z,4) = (A12, A23, A31)

A
(1)
5 = (A1x,5, A1y,5, A1z,5) = (A26, A34, A15)

s1,1 = s11 + s22 + s33 s
(3)
1 = (s3x,1, s3y,1) = [s33 − 1

2
(s11 + s22),

√
3

2
(s11 − s22)]

s1,2 = s23 + s13 + s12 s
(3)
2 = (s3x,2, s3y,2) = [s12 − 1

2
(s23 + s13),

√
3

2
(s23 − s13)]

s1,3 = s44 + s55 + s66 s
(3)
3 = (s3x,3, s3y,3) = [s66 − 1

2
(s44 + s55),

√
3

2
(s44 − s55)]

s
(1)
1 = (s1x,1, s1y,1, s1z,1) = (s34, s15, s26)

s
(1)
2 = (s1x,2, s1y,2, s1z,2) = (s24, s35, s16)

s
(1)
3 = (s1x,3, s1y,3, s1z,3) = (s14, s25, s36)

s
(1)
4 = (s1x,4, s1y,4, s1z,4) = (s56, s46, s45)

q1 = q23 + q31 + q12 q(3) = (q3x, q3y) = [
√

3
2

(q23 − q31),
1
2
(q23 + q31) − q12]

q
(1)
1 = (q1x,1, q1y,1, q1z,1) = (q34, q15, q26)

q
(1)
2 = (q1x,2, q1y,2, q1z,2) = (q24, q35, q16)

q
(1)
3 = (q1x,3, q1y,3, q1z,3) = (q14, q25, q36)

q
(1)
4 = (q1x,4, q1y,4, q1z,4) = (q56, q64, q45)
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Conversion Equations:

u1 = 1
3
uo − 1

3
u3x + 1√

3
u3y u2 = 1

3
uo − 1

3
u3x − 1√

3
u3y u3 = 1

3
uo + 2

3
u3x

u4 = u1x u5 = u1y u6 = u1z

A14 = 1
3
A1 + 1√

3
A3x + 1

3
A3y A25 = 1

3
A1 − 1√

3
A3x + 1

3
A3y A36 = 1

3
A1 − 2

3
A3y

A13 = A1x,1 A21 = A1y,1 A32 = A1z,1

A35 = A1x,2 A16 = A1y,2 A24 = A1z,2

A11 = A1x,3 A22 = A1y,3 A33 = A1z,3

A12 = A1x,4 A23 = A1y,4 A31 = A1z,4

A26 = A1x,5 A34 = A1y,5 A15 = A1z,5

s11 = 1
3
s1,1 − 1

3
s3x,1 + 1√

3
s3y,1 s22 = 1

3
s1,1 − 1

3
s3x,1 − 1√

3
s3y,1 s33 = 1

3
s1,1 + 2

3
s3x,1

s23 = 1
3
s1,2 − 1

3
s3x,2 + 1√

3
s3y,2 s13 = 1

3
s1,2 − 1

3
s3x,2 − 1√

3
s3y,2 s12 = 1

3
s1,2 + 2

3
s3x,2

s44 = 1
3
s1,3 − 1

3
s3x,3 + 1√

3
s3y,3 s55 = 1

3
s1,3 − 1

3
s3x,3 − 1√

3
s3y,3 s66 = 1

3
s1,3 + 2

3
s3x,3

s34 = s1x,1 s15 = s1y,1 s26 = s1z,1

s24 = s1x,2 s35 = s1y,2 s16 = s1z,2

s14 = s1x,3 s25 = s1y,3 s36 = s1z,3

s56 = s1x,4 s46 = s1y,4 s45 = s1z,4

q23 = 1
3
q1 + 1√

3
q3x + 1

3
q3y q31 = 1

3
q1 − 1√

3
q3x + 1

3
q3y q12 = 1

3
q1 − 2

3
q3y

q34 = q1x,1 q15 = q1y,1 q26 = q1z,1

q24 = q1x,2 q35 = q1y,2 q46 = q1z,2

q14 = q1x,3 q25 = q1y,3 q36 = q1z,3

q56 = q1x,4 q64 = q1y,4 q45 = q1z,4
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Group 432 - (O)

Labelling of Covariants

uo = u1 + u2 + u3 u(3) = (u3x, u3y) = [u3 − 1
2
(u1 + u2),

√
3

2
(u1 − u2)]

u(2) = (u2x, u2y, u2z) = (u4, u5, u6)

A2 = A14 + A25 + A36 A(3) = (A3x, A3y) = [
√

3
2

(A14 − A25),
1
2
(A14 + A25) − A36]

A
(1)
1 = (A1x,1, A1y,1, A1z,1) = (A13 + A12, A21 + A23, A32 + A31)

A
(2)
1 = (A1x,2, A1y,2, A1z,2) = (A35 + A26, A16 + A34, A24 + A15)

A
(3)
1 = (A1x,3, A1y,3, A1z,3) = (A11, A22, A33)

A
(1)
2 = (A2x,1, A2y,1, A2z,1) = (A13 − A12, A21 − A23, A32 − A31)

A
(2)
2 = (A2x,2, A2y,2, A2z,2) = (A36 − A26, A16 − A34, A24 − A15)

s1,1 = s11 + s22 + s33 s
(3)
1 = (s3x,1, s3y,1) = [s33 − 1

2
(s11 + s22),

√
3

2
(s11 − s22)]

s1,2 = s23 + s13 + s12 s
(3)
2 = (s3x,2, s3y,2) = [s12 − 1

2
(s23 + s13),

√
3

2
(s23 − s13)]

s1,3 = s44 + s55 + s66 s
(3)
3 = (s3x,3, s3y,3) = [s66 − 1

2
(s44 + s55),

√
3

2
(s44 − s55)]

s
(1)
1 = (s1x,1, s1y,1, s1z,1) = (s34 − s24, s15 − s35, s26 − s16)

s
(2)
1 = (s1x,2, s1y,2, s1z,2) = (s34 + s24, s15 + s35, s26 + s16)

s
(2)
2 = (s1x,3, s1y,3, s1z,3) = (s14, s25, s36)

s
(2)
3 = (s1x,4, s1y,4, s1z,4) = (s56, s46, s45)

q2 = q23 + q31 + q12 q(3) = (q3x, q3y) = [
√

3
2

(q23 − q31),
1
2
(q23 + q31) − q12]

q
(1)
1 = (q1x,1, q1y,1, q1z,1) = (q34 − q24, q15 − q35, q26 − q26)

q
(1)
2 = (q1x,2, q1y,2, q1z,2) = (q56, q64, q45)

q
(2)
1 = (q2x,1, q2y,1, q2z,1) = (q34 + q24, q15 + q35, q26 + q16)

q
(2)
2 = (q2x,2, q2y,2, q2z,2) = (q14, q25, q36)
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Conversion Equations:

u1 = 1
3
uo − 1

3
u3x + 1√

3
u3y u2 = 1

3
uo − 1

3
u3x − 1√

3
u3y u3 = 1

3
uo + 2

3
u3x

u4 = u2x u5 = u2y u6 = u2z

A14 = 1
3
A2 + 1√

3
A3x + 1

3
A3y A25 = 1

3
A2 − 1√

3
A3x + 1

3
A3y A36 = 1

3
A2 − 2

3
A3y

A13 = 1
2
(A1x,1 + A2x,1) A21 = 1

2
(A1y,1 + A2y,1) A32 = 1

2
(A1z,1 + A2z,1)

A12 = 1
2
(A1x,1 − A2x,1) A23 = 1

2
(A1y,1 − A2y,1) A31 = 1

2
(A1z,1 − A2z,1)

A35 = 1
2
(A1x,2 + A2x,2) A16 = 1

2
(A1y,2 + A2y,2) A24 = 1

2
(A1z,2 + A2z,2)

A26 = 1
2
(A1x,2 − A2x,2) A34 = 1

2
(A1y,2 − A2y,2) A15 = 1

2
(A1z,2 − A2z,2)

A11 = A1x,3 A22 = A1y,3 A33 = A1z,3

s11 = 1
3
s1,1 − 1

3
s3x,1 + 1√

3
s3y,1 s22 = 1

3
s1,1 − 1

3
s3x,1 − 1√

3
s3y,1 s33 = 1

3
s1,1 + 2

3
s3x,1

s23 = 1
3
s1,2 − 1

3
s3x,2 + 1√

3
s3y,2 s13 = 1

3
s1,2 − 1

3
s3x,2 − 1√

3
s3y,2 s12 = 1

3
s1,2 + 2

3
s3x,2

s44 = 1
3
s1,3 − 1

3
s3x,3 + 1√

3
s3y,3 s55 = 1

3
s1,3 − 1

3
s3x,3 − 1√

3
s3y,3 s66 = 1

3
s1,3 + 2

3
s3x,3

s34 = 1
2
(s1x,1 + s2x,1) s15 = 1

2
(s1y,1 + s2y,1) s26 = 1

2
(s1z,1 + s2z,1)

s24 = 1
2
(−s1x,1 + s2x,1) s35 = 1

2
(−s1y,1 + s2y,1) s16 = 1

2
(−s1z,1 + s2z,1)

s14 = s2x,2 s25 = s2y,2 s36 = s2z,2

s56 = s2x,3 s46 = s2y,3 s45 = s2z,3

q23 = 1
3
q2 + 1√

3
q3x + 1

3
q3y q31 = 1

3
q2 − 1√

3
q3x + 1

3
q3y q12 = 1

3
q2 − 2

3
q3y

q34 = 1
2
(q1x,1 + q2x,1) q15 = 1

2
(q1y,1 + q2y,1) q26 = 1

2
(q1z,1 + q2z,1)

q24 = 1
2
(−q1x,1 + q2x,1) q35 = 1

2
(−q1y,1 + q2y,1) q46 = 1

2
(−q1z,1 + q2z,1)

q14 = q1x,2 q25 = q1y,2 q36 = q1z,2

q56 = q2x,2 q64 = q2y,2 q45 = q2z,2
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Appendix F: List of symmetry descents

Parent Ferroic Type of Exomorphic
symmetry symmetry descent type

Triclinic parent group

1 (Ci) ⇓ 1 (C1) A0 1. C2 ⇓ C1

Monoclinic parent group

2z (C2z) ⇓ 1 (C1) A0 1. C2 ⇓ C1

mz (Csz) ⇓ 1 (C1) A0 1. C2 ⇓ C1

2z/mz (C2hz) ⇓ 1 (Ci) A0 1. C2 ⇓ C1

2z (C2z) A0 1. C2 ⇓ C1

mz (Csz) A0 1. C2 ⇓ C1

1 (C1) A2 5. D2 ⇓ C1

Orthorhombic parent group

2x2y2z (D2) ⇓ 2z (C2z) A0 1. C2 ⇓ C1

2x (C2x) A0 1. C2 ⇓ C1

2y (C2y) A0 1. C2 ⇓ C1

1 (C1) A2 5. D2 ⇓ C1

mxmy2z (C2vz) ⇓ 2z (C2z) A0 1. C2 ⇓ C1

mx (Csx) A0 1. C2 ⇓ C1

my (Csy) A0 1. C2 ⇓ C1

1 (C1) A2 5. D2 ⇓ C1

mxmymz (D2h) ⇓ 2z/mz (C2hz) A0 1. C2 ⇓ C1

2x/mx (C2hx) A0 1. C2 ⇓ C1

2y/my (C2hy) A0 1. C2 ⇓ C1

2x2y2z (D2) A0 1. C2 ⇓ C1

mxmy2z (C2vz) A0 1. C2 ⇓ C1

2xmymz (C2vx) A0 1. C2 ⇓ C1

mx2ymz (C2vy) A0 1. C2 ⇓ C1

1 (Ci) A2 5. D2 ⇓ C1

2z (C2z) A2 5. D2 ⇓ C1

2x (C2x) A2 5. D2 ⇓ C1

2y (C2y) A2 5. D2 ⇓ C1

mz (Csz) A2 5. D2 ⇓ C1

mx (Csx) A2 5. D2 ⇓ C1

my (Csy) A2 5. D2 ⇓ C1

1 (C1) A2 11. D2h ⇓ C1
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Parent Ferroic Type of Exomorphic
symmetry symmetry descent type

Tetragonal parent group

4z (C4z) ⇓ 2z (C2z) A0 1. C2 ⇓ C1

1 (C1) A1b 3. C4 ⇓ C1

4z (S4z) ⇓ 2z (C2z) A0 1. C2 ⇓ C1

1 (C1) A1b 3. C4 ⇓ C1

4z/mz (C4hz) ⇓ 2z/mz (C2hz) A0 1. C2 ⇓ C1

4z (C4z) A0 1. C2 ⇓ C1

4z (S4z) A0 1. C2 ⇓ C1

2z (C2z) A2 5. D2 ⇓ C1

1 (Ci) A1b 3. C4 ⇓ C1

mz (Csz) A1b 3. C4 ⇓ C1

1 (C1) A2 12. C4h ⇓ C1

4z2x2xy (D4z) ⇓ 4z (C4z) A0 1. C2 ⇓ C1

2x2y2z (D2) A0 1. C2 ⇓ C1

2xy2xy2z (D̂2z) A0 1. C2 ⇓ C1

2z (C2z) A2 5. D2 ⇓ C1

2x, 2y (C2x, C2y) B1b 7b. D4 ⇓ C2i

2xy, 2xy (C2xy, C2xy) B1b 7b. D4 ⇓ C2i

1 (C1) A1b 7a. D4 ⇓ C1

4zmxmxy (C4vz) ⇓ 4z (C4z) A0 1. C2 ⇓ C1

mxmy2z (C2vz) A0 1. C2 ⇓ C1

mxymxy2z (Ĉ2vz) A0 1. C2 ⇓ C1

2z (C2z) A2 5. D2 ⇓ C1

mx, my (Csx, Csy) B1b 7b. D4 ⇓ C2i

mxy, mxy (Csxy, Csxy) B1b 7b. D4 ⇓ C2i

1 (C1) A1b 7a. D4 ⇓ C1

4z2xmxy (D2dz) ⇓ 4z (S4z) A0 1. C2 ⇓ C1

2x2y2z (D2) A0 1. C2 ⇓ C1

mxymxy2z (Ĉ2vz) A0 1. C2 ⇓ C1

2z (C2z) A2 5. D2 ⇓ C1

2x, 2y (C2x, C2y) B1b 7b. D4 ⇓ C2i

mxy, mxy (Csxy, Csxy) B1b 7b. D4 ⇓ C2i

1 (C1) A1b 7a. D4 ⇓ C1

4zmx2xy (D̂2dz) ⇓ 4z (S4z) A0 1. C2 ⇓ C1

mxmy2z (C2vz) A0 1. C2 ⇓ C1

2xy2xy2z (D̂2z) A0 1. C2 ⇓ C1

2z (C2z) A2 5. D2 ⇓ C1

mx, my (Csx, Csy) B1b 7b. D4 ⇓ C2i

2xy, 2xy (C2xy, C2xy) B1b 7b. D4 ⇓ C2i

1 (C1) A1b 7a. D4 ⇓ C1
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Parent Ferroic Type of Exomorphic
symmetry symmetry descent type

Tetragonal parent group

4z/mzmxmxy (D4hz) ⇓
4z/mz (C4hz) A0 1. C2 ⇓ C1

mxmymz (D2h) A0 1. C2 ⇓ C1

mxymxymz (D̂2hz) A0 1. C2 ⇓ C1

4z2x2xy (D4z) A0 1. C2 ⇓ C1

4zmxmxy (C4vz) A0 1. C2 ⇓ C1

4z2xmxy (D2dz) A0 1. C2 ⇓ C1

4zmx2xy (D̂2dz) A0 1. C2 ⇓ C1

2z/mz (C2hz) A2 5. D2 ⇓ C1

4z (C4z) A2 5. D2 ⇓ C1

2x2y2z (D2) A2 5. D2 ⇓ C1

2xy2xy2z (D̂2z) A2 5. D2 ⇓ C1

4z (S4z) A2 5. D2 ⇓ C1

mxmy2z (C2vz) A2 5. D2 ⇓ C1

mxymxy2z (Ĉ2vz) A2 5. D2 ⇓ C1

2z (C2z) A2 11. D2h ⇓ C1

2x/mx, 2y/my (C2hx, C2hy) B1b 7b. D4 ⇓ C2i

2xy/mxy, 2xy/mxy (C2hxy, C2hxy) B1b 7b. D4 ⇓ C2i

1 (Ci) A1b 7a. D4 ⇓ C1

2xmymz, mx2ymz (C2vx, C2vy) B1b 7b. D4 ⇓ C2i

mxy2xymz, 2xymxymz (C2vxy, C2vxy) B1b 7b. D4 ⇓ C2i

mz (Csz) A1b 7a. D4 ⇓ C1

2x, 2y (C2x, C2y) B2 14b. D4h ⇓ C2i

2xy, 2xy (C2xy , C2xy) B2 14b. D4h ⇓ C2i

mx, my (Csx, Csy) B2 14b. D4h ⇓ C2i

mxy, mxy (Csxy , Csxy) B2 14b. D4h ⇓ C2i

1 (C1) A2 14a. D4h ⇓ C1
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Parent Ferroic Type of Exomorphic
symmetry symmetry descent type

Trigonal parent group

3z (C3) ⇓ 1 (C1) A1a 2. C3 ⇓ C1

3z (C3) ⇓ 3z (C3) A0 1. C2 ⇓ C1

1 (Ci) A1a 2. C3 ⇓ C1

1 (C1) A1b 4. C6 ⇓ C1

3z2x (D3x) ⇓ 3z (C3) A0 1. C2 ⇓ C1

2x, 2x′, 2x′′ (C2x, C2x′ , C2x′′) B1a 6b. D3 ⇓ C2j

1 (C1) A1b 6a. D3 ⇓ C1

3zmx (C3vx) ⇓ 3z (C3) A0 1. C2 ⇓ C1

mx, mx′ , mx′′ (Csx, Csx′ , Csx′′) B1a 6b. D3 ⇓ C2j

1 (C1) A1b 6a. D3 ⇓ C1

3zmx (D3dx) ⇓ 3z (C3i) A0 1. C2 ⇓ C1

3z2x (D3x) A0 1. C2 ⇓ C1

3zmx (C3vx) A0 1. C2 ⇓ C1

3z (C3) A2 5. D2 ⇓ C1

2x/mx, 2x′/mx′, 2x′′/mx′′ (C2hx, C2hx′ , C2hx′′) B1a 6b. D3 ⇓ C2j

1 (Ci) A1b 6a. D3 ⇓ C1

2x, 2x′, 2x′′ (C2x, C2x′ , C2x′′) B1b 8b. D6 ⇓ C2j

mx, mx′ , mx′′ (Csx, Csx′ , Csx′′) B1b 8b. D6 ⇓ C2j

1 (C1) A1b 8a. D6 ⇓ C1

3z2y (D3y) ⇓ 3z (C3) A0 1. C2 ⇓ C1

2y, 2y′ , 2y′′ (C2y , C2y′ , C2y′′) B1a 6b. D3 ⇓ C2j

1 (C1) A1b 6a. D3 ⇓ C1

3zmy (C3vy) ⇓ 3z (C3) A0 1. C2 ⇓ C1

my, my′ , my′′ (Csy, Csy′ , Csy′′ ) B1a 6b. D3 ⇓ C2j

1 (C1) A1b 6a. D3 ⇓ C1

3zmx (D3dx) ⇓ 3z (C3i) A0 1. C2 ⇓ C1

3z2y (D3y) A0 1. C2 ⇓ C1

3zmy (C3vy) A0 1. C2 ⇓ C1

3z (C3) A2 5. D2 ⇓ C1

2y/my, 2y′/my′ , 2y′′/my′′ (C2hy, C2hy′ , C2hy′′) B1a 6b. D3 ⇓ C2j

1 (Ci) A1b 6a. D3 ⇓ C1

2y, 2y′ , 2y′′ (C2y , C2y′ , C2y′′) B1b 8b. D6 ⇓ C2j

my, my′ , my′′ (Csy, Csy′ , Csy′′ ) B1b 8b. D6 ⇓ C2j

1 (C1) A1b 8a. D6 ⇓ C1
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Parent Ferroic Type of Exomorphic
symmetry symmetry descent type

Hexagonal parent group

6z (C6) ⇓ 3z (C3) A0 1. C2 ⇓ C1

2z (C2z) A1a 2. C3 ⇓ C1

1 (C1) A1b 4. C6 ⇓ C1

6z (C3h) ⇓ 3z (C3) A0 1. C2 ⇓ C1

mz (Csz) A1a 2. C3 ⇓ C1

1 (C1) A1b 4. C6 ⇓ C1

6z/mz (C6h) ⇓ 3z (C3i) A0 1. C2 ⇓ C1

6z (C6) A0 1. C2 ⇓ C1

6z (C3h) A0 1. C2 ⇓ C1

3z (C3) A2 5. D2 ⇓ C1

2z/mz (C2hz) A1a 2. C3 ⇓ C1

1 (Ci) A1b 4. C6 ⇓ C1

2z (C2z) A1b 4. C6 ⇓ C1

mz (Csz) A1b 4. C6 ⇓ C1

1 (C1) A2 13. C6h ⇓ C1

6z2x2y (D6) ⇓ 6z (C6) A0 1. C2 ⇓ C1

3z2x (D3x) A0 1. C2 ⇓ C1

3z2y (D3y) A0 1. C2 ⇓ C1

3z (C3) A2 5. D2 ⇓ C1

2x2y2z, 2x′2y′2z, 2x′′2y′′2z (D2, D2′ , D2′′) B1a 6b. D3 ⇓ C2j

2z (C2z) A1b 6a. D3 ⇓ C1

2x, 2x′, 2x′′ (C2x, C2x′ , C2x′′) B1b 8b. D6 ⇓ C2j

2y, 2y′ , 2y′′ (C2y , C2y′ , C2y′′) B1b 8b. D6 ⇓ C2j

1 (C1) A1b 8a. D6 ⇓ C1

6zmxmy (C6v) ⇓ 6z (C6) A0 1. C2 ⇓ C1

3zmx (C3vx) A0 1. C2 ⇓ C1

3zmy (C3vy) A0 1. C2 ⇓ C1

3z (C3) A2 5. D2 ⇓ C1

mxmy2z, mx′my′2z, mx′′my′′2z (C2vz , C2vz′ , C2vz′′) B1a 6b. D3 ⇓ C2j

2z (C2z) A1b 6a. D3 ⇓ C1

mx, mx′ , mx′′ (Csx, Csx′ , Csx′′) B1b 8b. D6 ⇓ C2j

my, my′ , my′′ (Csy, Csy′ , Csy′′ ) B1b 8b. D6 ⇓ C2j

1 (C1) A1b 8a. D6 ⇓ C1

6z2xmy (D3h) ⇓ 6z (C3h) A0 1. C2 ⇓ C1

3z2x (D3x) A0 1. C2 ⇓ C1

3zmy (C3vy) A0 1. C2 ⇓ C1

3z (C3) A2 5. D2 ⇓ C1

2xmymz, 2x′my′mz, 2x′′my′′mz (C2vx, C2vx′ , C2vx′′) B1a 6b. D3 ⇓ C2j

mz (Csz) A1b 6a. D3 ⇓ C1

2x, 2x′, 2x′′ (C2x, C2x′ , C2x′′) B1b 8b. D6 ⇓ C2j

my, my′ , my′′ (Csy, Csy′ , Csy′′ ) B1b 8b. D6 ⇓ C2j

1 (C1) A1b 8a. D6 ⇓ C1
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Parent Ferroic Type of Exomorphic
symmetry symmetry descent type

Hexagonal parent group

6zmx2y (D̂3h) ⇓ 6z (C3h) A0 1. C2 ⇓ C1

3zmx (C3vx) A0 1. C2 ⇓ C1

3z2y (D3y) A0 1. C2 ⇓ C1

3z (C3) A2 5. D2 ⇓ C1

mx2ymz, mx′2y′mz, mx′′2y′′mz (C2vy , C2vy′ , C2vy′′) B1a 6b. D3 ⇓ C2j

mz (Csz) A1b 6a. D3 ⇓ C1

mx, mx′ , mx′′ (Csx, Csx′ , Csx′′) B1b 8b. D6 ⇓ C2j

2y, 2y′ , 2y′′ (C2y , C2y′ , C2y′′) B1b 8b. D6 ⇓ C2j

1 (C1) A1b 8a. D6 ⇓ C1

6z/mzmxmy (D6h) ⇓
6z/mz (C6h) A0 1. C2 ⇓ C1

3zmx (D3dx) A0 1. C2 ⇓ C1

3z2y (D3dy) A0 1. C2 ⇓ C1

6z2x2y (D6) A0 1. C2 ⇓ C1

6zmxmy (C6v) A0 1. C2 ⇓ C1

6z2xmy (D3h) A0 1. C2 ⇓ C1

6zmx2y (D̂3h) A0 1. C2 ⇓ C1

3z (C3i) A2 5. D2 ⇓ C1

6z (C6) A2 5. D2 ⇓ C1

3z2x (D3x) A2 5. D2 ⇓ C1

3z2y (D3y) A2 5. D2 ⇓ C1

6z (C3h) A2 5. D2 ⇓ C1

3zmx (C3vx) A2 5. D2 ⇓ C1

3zmy (C3vy) A2 5. D2 ⇓ C1

3z (C3) A2 11. D2h ⇓ C1

mxmymz, mx′my′mz, mx′′my′′mz (D2h, D2h′ , D2h′′) B1a 6b. D3 ⇓ C2j

2z/mz (C2hz) A1b 6a. D3 ⇓ C1

2x/mx, 2x′/mx′ , 2x′′/mx′′ (C2hx, C2hx′ , C2hx′′) B1b 8b. D6 ⇓ C2j

2y/my, 2y′/my′, 2y′′/my′′ (C2hy , C2hy′ , C2hy′′) B1b 8b. D6 ⇓ C2j

1 (Ci) A1b 8a. D6 ⇓ C1

2x2y2z, 2x′2y′2z, 2x′′2y′′2z (D2, D2′ , D2′′) B1b 8b. D6 ⇓ C2j

mxmy2z, mx′my′2z, mx′′my′′2z (C2vz , C2vz′ , C2vz′′ ) B1b 8b. D6 ⇓ C2j

2z (C2z) A1b 8a. D6 ⇓ C1

2xmymz, 2x′my′mz, 2x′′my′′mz (C2vx, C2vx′ , C2vx′′ ) B1b 8b. D6 ⇓ C2j

mx2ymz, mx′2y′mz, mx′′2y′′mz (C2vy , C2vy′ , C2vy′′) B1b 8b. D6 ⇓ C2j

mz (Csz) A1b 8a. D6 ⇓ C1

2x, 2x′ , 2x′′ (C2x, C2x′ , C2x′′) B2 15b. D6h ⇓ C2j

2y, 2y′ , 2y′′ (C2y , C2y′ , C2y′′) B2 15b. D6h ⇓ C2j

mx, mx′ , mx′′ (Csx, Csx′ , Csx′′) B2 15b. D6h ⇓ C2j

my, my′ , my′′ (Csy , Csy′ , Csy′′) B2 15b. D6h ⇓ C2j

1 (C1) A2 15a. D6h ⇓ C1
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Parent Ferroic Type of Exomorphic
symmetry symmetry descent type

Cubic parent group

23 (T ) ⇓
2x2y2z (D2) A1a 2. C3 ⇓ C1

2z, 2x, 2y (C2z , C2x, C2y) B1b 9c. T ⇓ C2i

3p, 3q, 3r, 3s (C3p, C3q, C3r, C3s) B1a 9b. T ⇓ C3j

1 (C1) A1b 9a. T ⇓ C1

m3 (Th) ⇓
23 (T ) A0 1. C2 ⇓ C1

mxmymz (D2h) A1a 2. C3 ⇓ C1

2x2y2z (D2) A1b 4. C6 ⇓ C1

2z/mz, 2x/mx, 2y/my (C2hz, C2hx, C2hy) B1b 9c. T ⇓ C2i

3p, 3q, 3r, 3s (C3ip, C3iq, C3ir , C3is) B1a 9b. T ⇓ C3j

1 (Ci)) A1b 9a. T ⇓ C1

mxmy2z, 2xmymz, mx2ymz (C2vz , C2vx, C2vy) B1b 16c. Th ⇓ C2vi

2z, 2x, 2y (C2z , C2x, C2y) B2 16d. Th ⇓ C2i

mz , mx, my (Csz , Csx, Csy) B1b 16e. Th ⇓ Csi

3p, 3q, 3r, 3s (C3p, C3q, C3r, C3s) B1b 16b. Th ⇓ C3j

1 (C1) A1b 16a. Th ⇓ C1

432 (O) ⇓
23 (T ) A0 1. C2 ⇓ C1

4z2x2xy, 4x2y2yz, 4y2z2zx (D4z, D4x, D4y) B1a 6b. D3 ⇓ C2j

2x2y2z (D2) A1b 6a. D3 ⇓ C1

4z, 4x, 4y (C4z , C4x, C4y) B1b 10b. O ⇓ C4i

2xy2xy2z, 2yz2yz2x, 2zx2zx2y (D̂2z , D̂2x, D̂2y) B1b 10c. O ⇓ D̂2i

2z, 2x, 2y (C2z , C2x, C2y) B2 10f. O ⇓ C2i{
2xy, 2yz, 2zx (C2xy, C2yz, C2zx)
2xy, 2yz, 2zx (C2xy, C2yz, C2zx)

B1c 10g. O ⇓ C2ij

3p2xy, 3q2xy, 3r2xy, 3s2xy (D3p, D3q, D3r, D3s) B1a 10d. O ⇓ D3j

3p, 3q, 3r, 3s (C3p, C3q, C3r, C3s) B1b 10e. O ⇓ C3j

1 (C1) A1c 10a. O ⇓ C1

43m (Td) ⇓
23 (T ) A0 1. C2 ⇓ C1

4z2xmxy, 4x2ymyz, 4y2zmzx (D2dz, D2dx, D2dy) B1a 6b. D3 ⇓ C2j

2x2y2z (D2) A1b 6a. D3 ⇓ C1

4z, 4x, 4y (S4z , S4x, S4y) B1b 10b. O ⇓ C4i

mxymxy2z, myzmyz2x, mzxmzx2y (Ĉ2vz , Ĉ2vx, Ĉ2vy) B1b 10c. O ⇓ D̂2i

2z, 2x, 2y (C2z , C2x, C2y) B2 10f. O ⇓ C2i{
mxy, myz, mzx (Csxy, Csyz , Cszx)
mxy, myz, mzx (Csxy, Csyz , Cszx)

B1c 10g. O ⇓ C2ij

3pmxy, 3qmxy, 3rmxy, 3smxy (C3vp, C3vq , C3vr, C3vs) B1a 10d. O ⇓ D3j

3p, 3q, 3r, 3s (C3p, C3q, C3r, C3s) B1b 10e. O ⇓ C3j

1 (C1) A1c 10a. O ⇓ C1
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Parent Ferroic Type of Exomorphic
symmetry symmetry descent type

Cubic parent group

m3m (Oh) ⇓
m3 (Th) A0 1. C2 ⇓ C1

432 (O) A0 1. C2 ⇓ C1

43m (Td) A0 1. C2 ⇓ C1

23 (T ) A2 5. D2 ⇓ C1

4z/mzmxmxy, 4x/mxmymyz, 4y/mymzmzx

(D4hz, D4hx, D4hy) B1a 6b. D3 ⇓ C2j

mxmymz (D2h) A1b 6a. D3 ⇓ C1

4z/mz, 4x/mx, 4y/my (C4hz , C4hx, C4hy) B1b 10b. O ⇓ C4i

mxymxymz , myzmyzmx, mzxmzxmy (D̂2hz, D̂2hx, D̂2hy) B1b 10c. O ⇓ D̂2i

2z/mz, 2x/mx, 2y/my (C2hz , C2hx, C2hy) B2 10f. O ⇓ C2i{
2xy/mxy, 2yz/myz, 2zx/mzx (C2hxy , C2hyz, C2hzx)
2xy/mxy, 2yz/myz, 2zx/mzx (C2hxy , C2hyz, C2hzx)

B1c 10g. O ⇓ C2ij

3pmxy, 3qmxy, 3rmxy, 3smxy (D3dp, D3dq, D3dr, D3ds) B1a 10d. O ⇓ D3j

3p, 3q, 3r, 3s (C3ip, C3iq, C3ir , C3is) B1b 10e. O ⇓ C3j

1 (Ci) A1c 10a. O ⇓ C1

4z2x2xy, 4x2y2yz, 4y2z2zx (D4z, D4x, D4y) B1b 8b. D6 ⇓ C2i

4z2xmxy, 4x2ymyz, 4y2zmzx (D2dz, D2dx, D2dy) B1b 8b. D6 ⇓ C2i

2x2y2z (D2) A1b 8a. D6 ⇓ C1

4zmxmxy, 4xmymyz, 4ymzmzx (C4vz , C4vx, C4vy) B1b 17b. Oh ⇓ C4vi

4zmx2xy, 4xmy2yz, 4ymz2zx (D̂2dz, D̂2dx, D̂2dy) B1b 17b. Oh ⇓ C4vi

4z, 4x, 4y (C4z, C4x, C4y) B2 17e. Oh ⇓ C4i

2xy2xy2z, 2yz2yz2x, 2zx2zx2y (D̂2z, D̂2x, D̂2y) B2 17f. Oh ⇓ Ĉ2vi

4z, 4x, 4y (S4z, S4x, S4y) B2 17e. Oh ⇓ C4i

mxymxy2z, myzmyz2x, mzxmzx2y (Ĉ2vz , Ĉ2vx, Ĉ2vy) B2 17f. Oh ⇓ Ĉ2vi

mxmy2z, 2xmymz, mx2ymz (C2vz , C2vx, C2vy) B2 17g. Oh ⇓ C2vi

2z, 2x, 2y (C2z, C2x, C2y) B2 17k. Oh ⇓ C2i

mz, mx, my (Csz , Csx, Csy) B1c 17j. Oh ⇓ Csi{
mxy2xymz , myz2yzmx, mzx2zxmy (Ĉ2vxy, Ĉ2vyz , Ĉ2vzx)
2xymxymz , 2yzmyzmx, 2zxmzxmy (Ĉ2vxy, Ĉ2vyz , Ĉ2vzx)

B1c 17h. Oh ⇓ Ĉ2vij{
2xy, 2yz, 2zx (C2xy, C2yz, C2zx)
2xy, 2yz, 2zx (C2xy, C2yz, C2zx)

B1b 17l. Oh ⇓ C2ij{
mxy, myz, mzx (Csxy, Csyz , Cszx)
mxy, myz, mzx (Csxy, Csyz , Cszx)

B1b 17l. Oh ⇓ C2ij

3p2xy, 3q2xy, 3r2xy, 3s2xy (D3p, D3q, D3r, D3s) B1b 17c. Oh ⇓ D3j

3pmxy, 3qmxy, 3rmxy, 3smxy (C3vp, C3vq , C3vr, C3vs) B1b 17c. Oh ⇓ D3j

3p, 3q, 3r, 3s (C3p, C3q, C3r, C3s) B2 17d. Oh ⇓ C3j

1 (C1) A1c 17a. Oh ⇓ C1
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Appendix G: Nonstandard lattice letters

Orthorhombic to Monoclinic:

̂Pc = P [(a− b)/2, (a + b)/2, c] ̂Ic = I[(a − b)/2, (a + b)/2, c]
̂Pa = P [a, (b− c)/2, (b + c)/2] ̂Ia = I[a, (b− c)/2, (b + c)/2]
̂Pb = P [(c + a)/2,b, (c− a)/2] ̂Ib = I[(c + a)/2,b, (c− a)/2]

Tetragonal to Orthorhombic:

̂C = C[a− b, a + b, c] ̂F = F [a− b, a + b, c]

Tetragonal to Monoclinic:

̂C = C[a − b, a + b, c]

̂A = A[(a − b + c)/2, a + b, c]
̂B = B[a − b, (a + b + c)/2, c]

Rhombohedral to Monoclinic:

I1 = I(a,−co, c)
I2 = I(b,−ao, c)

I3 = I(−a − b,−bo, c)

Hexagonal to Orthorhombic and Monoclinic:

C1 = C(a, 2b + a, c)
C2 = C(b,−2a − b, c)

C3 = C(−a − b, a − b, c)

Cubic to Tetragonal Groups:

Pc = P (a,b, c) Pa = P (b, c, a) Pb = P (c, a,b)

Ic = I(a,b, c) Ia = I(b, c, a) Ib = I(c, a,b).

Ic = I[(a− b)/2, (a + b)/2, c]

̂Ia = I[(b− c)/2, (b + c)/2, a]

̂Ib = I[(c − a)/2, (c + a)/2,b].
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Cubic to Orthorhombic and Monoclinic Groups:

̂Cc = C[a− b, a + b, c]

̂Ca = C[b− c,b + c, a]

̂Cb = C[c − a, c + a,b].

Ic = I[(a− b)/2, (a + b)/2, c]

̂Ia = I[(b− c)/2, (b + c)/2, a]

̂Ib = I[(c − a)/2, (c + a)/2,b].

̂Fc = F [a− b, a + b, c]

̂Fa = F [b − c,b + c, a]

̂Fb = F [c − a, c + a,b].

̂Ac = A[(a− b + c)/2, a + b, c]

̂Bc = B[a − b, (a + b + c)/2, c]

̂Aa = A[(b − c + a)/2,b + c, a]

̂Ba = B[b− c, (b + c + a)/2, a]

̂Ab = A[(c − a + b)/2, c + a,b]

̂Bb = B[c − a, (c + a + b)/2,b]

Cubic to Trigonal Groups:

P =⇒ RP,p = T (a,b, c)
RP,q = T (−a,−b, c)
RP,r = T (a,−b,−c)
RP,s = T (−a,b,−c)

I =⇒ RI,p = T [(a + b − c)/2, (b + c − a)/2, (c + a− b)/2]
RI,q = T [(−a − b− c)/2, (−b + c + a)/2, (c− a + b)/2]
RI,r = T [(a − b + c)/2, (−b− c − a)/2, (−c + a + b)/2]
RI,s = T [(−a + b + c)/2, (b− c + a)/2, (−c − a − b)/2]

F =⇒ RF,p = T [(a + b)/2, (b + c)/2, (c + a)/2]
RF,q = T [(−a − b)/2, (−b + c)/2, (c− a)/2]
RF,r = T [(a− b)/2, (−b− c)/2, (−c + a)/2]
RF,s = T [(−a + b)/2, (b− c)/2, (−c− a)/2]
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