Tables for
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2013). Vol. D. ch. 1.11, pp. 269-270

Section 1.11.1. Introduction

V. E. Dmitrienko,a* A. Kirfelb and E. N. Ovchinnikovac

aA. V. Shubnikov Institute of Crystallography, Leninsky pr. 59, Moscow 119333, Russia,bSteinmann Institut der Universität Bonn, Poppelsdorfer Schloss, Bonn, D-53115, Germany, and cFaculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
Correspondence e-mail:

1.11.1. Introduction

| top | pdf |

The tensorial characteristics of macroscopic physical properties (as described in Chapters 1.3[link] , 1.4[link] and 1.6[link]1.8[link] of this volume) are determined by the crystal point group, whereas the symmetry of local crystal properties, such as atomic displacement parameters (Chapter 1.9[link] ) or electric field gradient tensors (Section 2.2.15[link] ) are regulated by the crystal space group. In the present chapter, we consider further examples of the impact of symmetry on local physical properties, particularly both symmetry and physical phenomena that allow and restrict forbidden reflections excited at radiation energies close to X-ray absorption edges of atoms, and reflections caused by magnetic scattering.

We begin with the X-ray dielectric susceptibility, which expresses the response of crystalline matter to an incident X-ray wave characterized by its energy (frequency), polarization and wavevector. The response is a polarization of the medium, finally resulting in a scattered wave with properties generally different from the initial ones. Thus, the dielectric susceptibility plays the role of a scattering amplitude, which relates the scattered wave to the incident wave. This is the basis of the different approaches to X-ray diffraction theories presented in Chapters 1.2[link] and 5.1[link] of International Tables for Crystallography Volume B (2008)[link]. Here, we consider only elastic scattering, i.e. the energies of the incident and scattered waves are identical, and the X-ray susceptibility is assumed to comply with the periodicity of the crystalline matter.

It is important that the dielectric susceptibility is (i) a local crystal property and (ii) a tensor physical property, because it relates the polarization vectors of the incident and scattered radiation. Consequently, the symmetry of the tensor is determined by the symmetry of the crystal space group, rather than by that of the point group as in conventional optics. In the vast majority of X-ray applications, this tensor can reasonably be assumed to be given by the product of the unit tensor and a scalar susceptibility, which is proportional to the electron density plus exclusively energy-dependent dispersion corrections as considered in Section 4.2.6[link] of International Tables for Crystallography Volume C (2004)[link]. As a result of atomic wavefunction distortions caused by neighbouring atoms, these scalar dispersion corrections can also become anisotropic tensors, namely in the close vicinity (usually less than about 50 eV) of absorption edges of elements. For heavy elements, the anisotropy of the tensor atomic factor can exceed 20 e atom−1. Appropriate references to detailed descriptions of the phenomenon can be found in Brouder (1990[link]), Materlik et al. (1994[link]) and in Section 4.2.6[link] of Volume C (2004)[link].

However, even if the anisotropy of the atomic factor is small, it can be crucial for some effects, for instance the excitation of so-called `forbidden' reflections, which vanish in absence of anisotropy. Indeed, the crystal symmetry imposes strong restrictions on the indices of possible (`allowed') reflections. The systematic reflection conditions for the different space groups and for special atomic sites in the unit cell are listed in International Tables for Crystallography Volume A (Hahn, 2005[link]). The resulting extinctions are due to (i) the translation symmetry of the non-primitive Bravais lattices, (ii) the symmetry elements of the space group (glide planes and/or screw axes) and (iii) special sites. The first kind cannot be violated. The other extinctions are obtained if the atomic scattering factor (as the Fourier transform of an independent atom/ion with spherically symmetric electron-density distribution) is an element-specific scalar that depends only on the scattering-vector length and the dispersion corrections. Then the intensities of extinct reflections generally vanish. These reflections are `forbidden', but for different physical reasons not all of their intensities are necessarily strictly zero. Such reflections can appear owing to an asphericity of (i) an atomic electron-density distribution caused by chemical bonding and/or (ii) atomic vibrations (Dawson, 1975[link]) if the atom in question occupies a special site.

In contrast, an anisotropy of the atomic factor affects all reflections and can therefore violate general extinction rules related to glide planes and/or screw axes, i.e. symmetry elements with translation components, in nonsymmorphic space groups. Even a very small X-ray anisotropy can be quantitatively studied with this type of forbidden reflections, and yield information about electronic states of crystals or partial structures of resonant scatterers. This was first recognized by Templeton & Templeton (1980[link]), and a detailed theory was developed only a few years later (Dmitrienko, 1983[link], 1984[link]). The excitation of forbidden reflections caused by anisotropic anomalous scattering was first observed in an NaBrO3 crystal (Templeton & Templeton, 1985[link], 1986[link]) and then studied for Cu2O (Eichhorn & Kirfel, 1988[link]), TiO2 and MnF2 (Kirfel & Petcov, 1991[link]), and for many other compounds with different crystal symmetries. Within the dipole approximation, a systematic compilation of `forbidden' reflection properties for all relevant space groups up to tetragonal symmetry and an application to partial-structure analysis followed (Kirfel et al., 1991[link]; Kirfel & Petcov, 1992[link]; Kirfel & Morgenroth, 1993[link]; Morgenroth et al., 1994[link]). Today, there are numerous surveys devoted to this well developed subject, and further details, applications and references can be found therein (Belyakov & Dmitrienko, 1989[link]; Carra & Thole, 1994[link]; Hodeau et al., 2001[link]; Lovesey et al., 2005[link]; Dmitrienko et al., 2005[link]; Altarelli, 2006[link]; Collins et al., 2007[link]; Collins & Bombardi, 2010[link]; Finkelstein & Dmitrienko, 2012[link]). Forbidden reflections of the last type have also been observed (well before corresponding X-ray studies) in diffraction of Mössbauer radiation (Belyakov & Aivazyan, 1969[link]; Belyakov, 1975[link]; Champeney, 1979[link]) and, at optical wavelengths, in the blue phases of chiral liquid crystals (Belyakov & Dmitrienko, 1985[link]; Wright & Mermin, 1989[link]; Seideman, 1990[link]; Crooker, 2001[link]). Similar phenomena have also been reported to exist in chiral smectic liquid crystals (Gleeson & Hirst, 2006[link]; Barois et al., 2012[link]) and, considering neutron diffraction, in crystals with local anisotropy of the magnetic susceptibility (Gukasov & Brown, 2010[link]). All these latter findings are, however, beyond the scope of this chapter.

X-ray polarization phenomena similar to those in visible optics and spectroscopy (birefringence, linear and circular dichroism, the Faraday rotation) have been discussed since the beginning of the 20th century (Hart & Rodriques, 1981[link]; Templeton & Templeton, 1980[link], 1982[link]). Experimental studies and applications were mainly prompted by the development of synchrotrons and storage devices as sources of polarized X-rays (a historical overview can be found in Rogalev et al., 2006[link]). In particular, for non-magnetic media, X-ray natural circular dichroism (XNCD) is used as a method for studying electronic states with mixed parity (Natoli et al., 1998[link]; Goulon et al., 2003[link]). Various kinds of X-ray absorption spectroscopies using polarized X-rays have been developed for magnetic materials; examples are XMCD (X-ray magnetic circular dichroism) (Schütz et al., 1987[link]; Thole et al., 1992[link]; Carra et al., 1993[link]) and XMLD (X-ray magnetic linear dichroism) (Thole et al., 1986[link]; van der Laan et al., 1986[link]; Arenholz et al., 2006[link]; van der Laan et al., 2008[link]). X-ray magnetochiral dichroism (XM[\chi]D) was discovered by Goulon et al. (2002[link]) and is used as a probe of toroidal moment in solids. Sum rules connecting X-ray spectral parameters with the physical properties of the medium have also been developed (Thole et al., 1992[link]; Carra et al., 1993[link]; Goulon et al., 2003[link]) for various kinds of X-ray spectroscopies and are widely used for applications. These types of X-ray absorption spectroscopies are not considered here, as this chapter is mainly devoted to X-ray tensorial properties observed in single-crystal diffraction.


First citationCrooker, P. P. (2001). Blue phases. In Chirality in Liquid Crystals, edited by H.-S. Kitzerow & C. Bahr, pp. 186–222. New York: Springer.Google Scholar
First citationInternational Tables for Crystallography (2004). Volume C, Mathematical, Physical and Chemical Tables, 3rd ed., edited by E. Prince. Dordrecht: Kluwer.Google Scholar
First citationInternational Tables for Crystallography (2008). Volume B, Reciprocal Space, 3rd ed., edited by U. Shmueli. Heidelberg: Springer.Google Scholar
First citationAltarelli, M. (2006). Resonant X-ray scattering: a theoretical introduction. Lecture Notes in Physics, Vol. 697, pp. 201–242. Heidelberg: Springer.Google Scholar
First citationArenholz, E., van der Laan, G., Chopdekar, R. V. & Suzuki, Y. (2006). Anisotropic X-ray magnetic linear dichroism at the Fe L2,3 edges in Fe3O4. Phys. Rev. B, 74, 094407.Google Scholar
First citationBarois, P., Gleeson, H., Huang, C. & Pindak, R. (2012). Application of X-ray resonant diffraction to structural studies of liquid crystals. Eur. Phys. J. Spec. Top. 208, 333–350.Google Scholar
First citationBelyakov, V. A. (1975). Diffraction of Mössbauer gamma-radiation in crystals. Sov. Phys. Usp. 18, 267–299.Google Scholar
First citationBelyakov, V. A. & Aivazyan, Y. M. (1969). Quadrupole diffraction maxima in Mossbauer scattering. JETP Lett. 9, 393.Google Scholar
First citationBelyakov, V. A. & Dmitrienko, V. E. (1985). The blue phase of liquid crystals. Sov. Phys. Usp. 28, 535–562.Google Scholar
First citationBelyakov, V. A. & Dmitrienko, V. E. (1989). Polarisation phenomena in X-ray optics. Sov. Phys. Usp. 32, 697–719.Google Scholar
First citationBrouder, C. (1990). Angular dependence of X-ray absorption spectra. J. Phys. Condens. Matter, 2, 701–738.Google Scholar
First citationCarra, P. & Thole, B. T. (1994). Anisotropic X-ray anomalous diffraction and forbidden reflections. Rev. Mod. Phys. 66, 1509–1515.Google Scholar
First citationCarra, P., Thole, B. T., Altarelli, M. & Wang, X. (1993). X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694–697.Google Scholar
First citationChampeney, D. C. (1979). The scattering of Mössbauer radiation by condensed matter. Rep. Prog. Phys. 42, 1017–1054.Google Scholar
First citationCollins, S. & Bombardi, A. (2010). Resonant X-ray scattering and absorption. In Magnetism and Synchrotron Radiation, edited by E. Beaurepaire, H. Bulou, F. Scheurer & K. Jean-Paul. Springer Proceedings in Physics, Vol. 133, pp. 223–262. Berlin, Heidelberg: Springer.Google Scholar
First citationCollins, S., Lovesey, S. & Balcar, E. (2007). Dichroism and resonant diffraction in X-ray scattering by complex materials. J. Phys. Condens. Matter, 19, 213201.Google Scholar
First citationDawson, B. (1975). Studies of atomic charge density by X-ray and neutron diffraction – a perspective. In Advances in Structure Research by Diffraction Methods, Vol. 6, edited by W. Hoppe & R. Mason. Oxford: Pergamon Press.Google Scholar
First citationDmitrienko, V. E. (1983). Forbidden reflections due to anisotropic X-ray susceptibility of crystals. Acta Cryst. A39, 29–35.Google Scholar
First citationDmitrienko, V. E. (1984). Anisotropy of X-ray susceptibility and Bragg reflections in cubic crystals. Acta Cryst. A40, 89–95.Google Scholar
First citationDmitrienko, V. E., Ishida, K., Kirfel, A. & Ovchinnikova, E. N. (2005). Polarization anisotropy of X-ray atomic factors and `forbidden' resonant reflections. Acta Cryst. A61, 481–493.Google Scholar
First citationEichhorn, K. & Kirfel, A. (1988). Genaue Strukturuntersuchung mit Synchrotron Strahlung. II. Anisotropie der anomalen Dispersion in Cuprit, Cu2O. Z. Kristallogr. 185, 56–58.Google Scholar
First citationFinkelstein, K. D. & Dmitrienko, V. E. (2012). Resonant scattering techniques. In Characterization of Materials, edited by E. N. Kaufmann, pp. 1–15. New Jersey: John Wiley & Sons, Inc.Google Scholar
First citationGleeson, H. & Hirst, L. (2006). Resonant X-ray scattering: a tool for structure elucidation in liquid crystals. Chem. Phys. Chem. 7, 321–328.Google Scholar
First citationGoulon, J., Rogalev, A., Wilhelm, F., Goulon-Ginet, C. & Carra, P. (2002). X-ray magnetochiral dichroism: a new spectroscopic probe of parity nonconserving magnetic solids. Phys. Rev. Lett. 88, 237401.Google Scholar
First citationGoulon, J., Rogalev, A., Wilhelm, F., Goulon-Ginet, C., Carra, P., Marri, I. & Brouder, C. (2003). X-ray optical activity: application of sum rules. J. Exp. Theor. Phys. 97, 402–431.Google Scholar
First citationGukasov, A. & Brown, P. J. (2010). Determination of atomic site susceptibility tensors from neutron diffraction data on polycrystalline samples. J. Phys. Condens. Matter, 22, 502201.Google Scholar
First citationHahn, Th. (2005). Editor. International Tables for Crystallography, Volume A, Space-Group Symmetry, 5th ed. Heidelberg: Springer.Google Scholar
First citationHart, M. & Rodriques, A. R. D. (1981). Optical activity and the Faraday effect at X-ray frequencies. Philos. Mag. B, 43, 321–332.Google Scholar
First citationHodeau, J.-L., Favre-Nicolin, V., Bos, S., Renevier, H., Lorenzo, E. & Bérar, J.-F. (2001). Resonant diffraction. Chem. Rev. 101, 1843–1867.Google Scholar
First citationKirfel, A. & Morgenroth, W. (1993). Anisotropy of anomalous scattering in X-ray diffraction. III. `Forbidden' axial reflections in space groups up to orthorhombic symmetry. Acta Cryst. A49, 35–45.Google Scholar
First citationKirfel, A. & Petcov, A. (1991). Anisotropy of anomalous dispersion. An application to partial structure determination. Z. Kristallogr. 195, 1–15.Google Scholar
First citationKirfel, A. & Petcov, A. (1992). Anisotropy of anomalous scattering in X-ray diffraction. II. Combining polarization-dependent transmission and diffraction, and an application to partial-structure analysis. Acta Cryst. A48, 247–259.Google Scholar
First citationKirfel, A., Petcov, A. & Eichhorn, K. (1991). Anisotropy of anomalous dispersion in X-ray diffraction. Acta Cryst. A47, 180–195.Google Scholar
First citationLaan, G. van der, Arenholz, E., Chopdekar, R. V. & Suzuki, Y. (2008). Influence of crystal field on anisotropic X-ray magnetic linear dichroism at the Co2+ L2,3 edges. Phys. Rev. B, 77, 064407.Google Scholar
First citationLaan, G. van der, Thole, B. T., Sawatzky, G., Goedkoop, J. B., Fuggle, J. C., Esteva, J.-M., Karnatak, R., Remeika, J. P. & Dabkowska, H. A. (1986). Experimental proof of magnetic X-ray dichroism. Phys. Rev. B, 34, 6529–6531.Google Scholar
First citationLovesey, S. W., Balcar, E., Knight, K. S. & Fernández-Rodríguez, J. (2005). Electronic properties of crystalline materials observed in X-ray diffraction. Phys. Rep. 411, 233–289.Google Scholar
First citationMaterlik, G., Sparks, C. J. & Fischer, K. (1994). Editors. Resonant Anomalous X-ray Scattering. Theory and Applications. Amsterdam: North-Holland.Google Scholar
First citationMorgenroth, W., Kirfel, A. & Fischer, K. (1994). Anisotropy of anomalous scattering in X-ray diffraction. 'Forbidden' axial reflections in tetragonal space groups. Z. Kristallogr. 209, 124–131.Google Scholar
First citationNatoli, C. R., Brouder, C., Sainctavit, P., Goulon, J., Goulon-Ginet, C. & Rogalev, A. (1998). Calculation of X-ray natural circular dichroism. Eur. Phys. J. B, 4, 1–11.Google Scholar
First citationRogalev, A., Wilhelm, F., Jaouen, N., Goulon, J. & Kappler, J.-P. (2006). X-ray magnetic circular dichroism: historical perspective and recent highlights. Lecture Notes in Physics, Vol. 697, pp. 71–89. Heidelberg: Springer.Google Scholar
First citationSchütz, G., Wagner, W., Wilhelm, W., Kenle, P., Zeller, R., Frahm, R. & Materlik, G. (1987). Absorption of circularly polarized X-rays in iron. Phys. Rev. Lett. 58, 737–740.Google Scholar
First citationSeideman, T. (1990). The liquid-crystalline blue phases. Rep. Prog. Phys. 53, 659–705.Google Scholar
First citationTempleton, D. H. & Templeton, L. K. (1980). Polarized X-ray absorption and double refraction in vanadyl bisacetylacetonate. Acta Cryst. A36, 237–241.Google Scholar
First citationTempleton, D. H. & Templeton, L. K. (1982). X-ray dichroism and polarized anomalous scattering of the uranyl ion. Acta Cryst. A38, 62–67.Google Scholar
First citationTempleton, D. H. & Templeton, L. K. (1985). Tensor X-ray optical properties of the bromate ion. Acta Cryst. A41, 133–142.Google Scholar
First citationTempleton, D. H. & Templeton, L. K. (1986). X-ray birefringence and forbidden reflections in sodium bromate. Acta Cryst. A42, 478–481.Google Scholar
First citationThole, B. T., Carra, P., Sette, F. & van der Laan, G. (1992). X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–1946.Google Scholar
First citationThole, B. T., van der Laan, G. & Sawatzky, G. (1986). Strong magnetic dichroism predicted in the M4,5 X-ray absorption spectra of magnetic rare-earth materials. Phys. Rev. Lett. 55, 2086–2088.Google Scholar
First citationWright, D. C. & Mermin, N. D. (1989). Crystalline liquids: the blue phases. Rev. Mod. Phys. 61, 385–432.Google Scholar

to end of page
to top of page