
1.11. TENSORIAL PROPERTIES OF LOCAL CRYSTAL SUSCEPTIBILITIES

1.11.5. Non-resonant magnetic scattering

Far from resonance (h- !� Ec � Ea), the non-resonant parts of

the scattering factor, f0 and f
mag
ij , described by the first two terms

in (1.11.4.3) are the most important. In the classical approxima-

tion (Brunel & de Bergevin, 1981), there are four physical

mechanisms (electric or magnetic, dipolar or quadrupolar)

describing the interaction of an electron and its magnetic moment

with an electromagnetic wave, causing the re-emission of radia-

tion. The non-resonant magnetic term f magn is small compared to

the charge (Thomson) scattering owing (a) to small numbers of

unpaired (magnetic) electrons and (b) to the factor h- !=mc2 of

about 0.02 for a typical X-ray energy h- ! ¼ 10 keV. This is the

reason why it is so difficult to observe non-resonant magnetic

scattering with conventional X-ray sources (de Bergevin &

Brunel, 1972, 1981; Brunel & de Bergevin, 1981), in contrast to

the nowadays normal use of synchrotron radiation.

Non-resonant magnetic scattering yields polarization proper-

ties quite different from those obtained from charge scattering.

Moreover, it can be divided into two parts, which are associated

with the spin and orbital moments. In contrast to the case of

neutron magnetic scattering, the polarization properties of these

two parts are different, as described by the tensors (Blume, 1994)
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where �ijk is a completely antisymmetric unit tensor (the Levi-

Civita symbol).

Being convoluted with polarization vectors (Blume, 1985;

Lovesey & Collins, 1996; Paolasini, 2012), the non-resonant

magnetic term can be rewritten as
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with vectors A and B given by

A ¼ ½e0� � e�; ð1:11:5:4Þ

B ¼ ½e0� � e� � f½k� e�ðk � e0�Þ � ½k0 � e0��ðk0 � eÞ

þ ½k0 � e0�� � ½k� e�g=k2: ð1:11:5:5Þ

According to (1.11.5.4) and (1.11.5.5), the polarization depen-

dences of the spin and orbit contributions to the atomic scattering

factor are significantly different. Consequently, the two contri-

butions can be separated by analysing the polarization of the

scattered radiation with the help of an analyser crystal (Gibbs et

al., 1988). Usually the incident (synchrotron) radiation is

�-polarized, i.e. the polarization vector is perpendicular to the

scattering plane. If due to the orientation of the analysing crystal

only the �-polarized part of the scattered radiation is recorded,

we can see from (1.11.5.4) that the orbital contribution to the

scattering atomic factor vanishes, whereas it differs from zero

considering the �! � scattering channel.

1.11.6. Resonant atomic factors: multipole expansion

Strong enhancement of resonant scattering occurs when the

energy of the incident radiation gets close to the energy of an

electron transition from an inner shell to an empty state (be it

localized or not) above the Fermi level. There are two widely

used approaches for calculating resonant atomic amplitudes. One

uses Cartesian, the other spherical (polar) coordinates, and both

have their own advantages and disadvantages. Supposing in

(1.11.4.3)
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and using the expression for the velocity matrix element �ac

(Berestetskii et al., 1982) �ac ¼ i!acrac, it is possible to present the

resonant part of the atomic factor (1.11.4.3) as
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where h- !ca ¼ Ec � Ea, Djk is a dimensionless tensor corre-

sponding to the dipole–dipole ðE1E1Þ contribution, Ijkl is the

dipole–quadrupole ðE1E2Þ contribution and Qjklm is the quad-

rupole–quadrupole ðE2E2Þ term. All the tensors are complex and

depend on the energy and the local properties of the medium.

The expansion (1.11.6.1) over the wavevectors is possible near

X-ray absorption edges because the products k � rp are small for

the typical sizes of the inner shells involved. In resonant X-ray

absorption and scattering, the contribution of the magnetic

multipole ML transitions is usually much less than that of the

electric multipole EL transitions. Nevertheless, the scattering

amplitude corresponding to E1M1 events has also been consid-

ered (Collins et al., 2007). The tensors Ijkl and Qjklm describe the

spatial dispersion effects similar to those in visible optics.

1.11.6.1. Tensor atomic factors: internal symmetry

Different types of tensors transform under the action of the

extended orthogonal group (Sirotin & Shaskolskaya, 1982) as

Ai0
1
...i0n
¼ �ri0

1
k1
. . . ri0nkn

Ak1...kn
; ð1:11:6:4Þ

where the coefficients � ¼ �1 depend on the kind of tensor (see

Table 1.11.6.1) and ri0
1
k1

are coefficients describing proper rota-

tions.

Various parts of the resonant scattering factor (1.11.6.3)

possess different kinds of symmetry with respect to: (1) space

inversion �1 or parity, (2) rotations R and (3) time reversal 10. Both

dipole–dipole and quadrupole–quadrupole terms are parity-

even, whereas the dipole–quadrupole term is parity-odd. Thus,
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Table 1.11.6.1. Coefficients � corresponding to various kinds of tensor
symmetry with respect to space inversion �1, rotations R, and time reversal 10

Tensor type Example

Transformation type

R �1R 10R �10R

Even Strain 1 1 1 1
Electric Electric field 1 �1 1 �1
Magnetic Magnetic field 1 1 �1 �1
Magnetoelectric Toroidal moment 1 �1 �1 1

International Tables for Crystallography (2013). Vol. D, Section 1.11.6, pp. 275–280.
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

dipole–quadrupole events can exist only for atoms at positions

without inversion symmetry.

It is convenient to separate the time-reversible and time-non-

reversible terms in the contributions to the atomic tensor factor

(1.11.6.3). The dipole–dipole contribution to the resonant atomic

factor can be represented as a sum of an isotropic, a symmetric

and an antisymmetric part, written as (Blume, 1994)

Djk ¼ Dres
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p0a ¼ pa=½!� !ca � i�=ð2h- Þ� and p0�a ¼ p�a=½!� !c�a � i�=ð2h- Þ�; p�a

means the probability of the time-reversed state j�ai. If, for

example, jai has a magnetic quantum number m, then j�ai has a

magnetic quantum number �m.

In non-magnetic crystals, the probability of states with �m is

the same, so that p�a ¼ pa and h�ajRs
j j�ci ¼ hcjR

s
kjai; in this case Djk

is symmetric under permutation of the the indices.

Similarly, the dipole–quadrupole atomic factor can be repre-

sented as (Blume, 1994)
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with �; � ¼ �1. In (1.11.6.10) the first plus (� ¼ 1) corresponds

to the non-magnetic case (time reversal) and the minus (� ¼ �1)

corresponds to the time-non-reversal magnetic term, while the

second � corresponds to the symmetric and antisymmetric parts

of the atomic factor. We see that I��jkl ðkl � k0lÞ can contribute only

to scattering, while I�þjkl ðkl þ k0lÞ can contribute to both resonant

scattering and resonant X-ray propagation. The latter term is a

source of the so-called magnetochiral dichroism, first observed in

Cr2O3 (Goulon et al., 2002, 2003), and it can be associated with a

toroidal moment in a medium possessing magnetoelectric prop-

erties. The symmetry properties of magnetoelectic tensors are

described well by Sirotin & Shaskolskaya (1982), Nye (1985) and

Cracknell (1975). Which magnetoelectric properties can be

studied using X-ray scattering are widely discussed by Marri &

Carra (2004), Matsubara et al. (2005), Arima et al. (2005) and

Lovesey et al. (2007).

It follows from (1.11.6.8) and (1.11.6.10) that Ijkl ¼ Ijlk and the

dipole–quadrupole term can be represented as a sum of the

symmetric Iþjkl ¼ Iþkjl and antisymmetric I�jkl ¼ �I�kjl parts. From

the physical point of view, it is useful to separate the dipole–

quadrupole term into Iþjkl and I�jkl, because only I�jkl works in

conventional optics where k0 ¼ k. The dipole–quadrupole terms

are due to the hybridization of excited electronic states with

different spacial parities, i.e. only for atomic sites without an

inversion centre.

The pure quadrupole–quadrupole term in the tensor atomic

factor is equal to

f
qq
jk ¼

1
4Qjlkmk0lkm ð1:11:6:11Þ

with the fourth-rank tensor Qjklm given by
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This fourth-rank tensor Qijkm has the following symmetries:

Qjlkm ¼ Qljkm ¼ Qjlmk: ð1:11:6:13Þ

We can define

Qjlkm ¼ Qþjlkm þQ�jlkm ð1:11:6:14Þ

with Q�jlkm ¼ �Qkmjl , where

Q�jlkm ¼
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4
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We see that Q�jlkm vanishes in time-reversal invariant systems,

which is true for non-magnetic structures.

1.11.6.2. Tensor atomic factors (non-magnetic case)

In time-reversal invariant systems, equation (1.11.6.3) can be

rewritten as

f res
jk ¼ Dþjk þ iIþjklðk

0
l � klÞ þ iI�jklðk

0
l þ klÞ þQþjlkmk0lkm þ . . . ;

ð1:11:6:16Þ

where Dþjk corresponds to the symmetric part of the dipole–dipole

contribution, Iþjkl and I�jkl mean the symmetric and antisymmetric

parts of the third-rank tensor describing the dipole–quadrupole

term, and Qþjlkm denotes a symmetric quadrupole–quadrupole

contribution. From the physical point of view, it is useful to

separate the dipole–quadrupole term into Iþjkl and I�jkl, because in

conventional optics, where k0 ¼ k, only I�jkl is relevant.

The tensors contributing to the atomic factor in (1.11.6.16),

Djk, Iþjkl, I�jkl, Qjlkm, are of different ranks and must obey the site

symmetry of the atomic position. Generally, the tensors can be

different, even for crystallographically equivalent positions, but

all tensors of the same rank can be related to one of them,

because all are connected through the symmetry operations of

the crystal space group. In contrast, the scattering amplitude

tensor f res
jm does not necessarily comply with the point symmetry

of the atomic position, because this symmetry is usually violated

considering the arbitrary directions of the radiation wavevectors

k and k0.

Equation (1.11.6.16) is also frequently considered as a

phenomenological expression of the tensor atomic factor where
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each tensor possesses internal symmetry (with respect to index

permutations) and external symmetry (with respect to the atomic

environment of the resonant atom). For instance, the tensor Djk is

symmetric, the rank-3 tensor has a symmetric and a antisym-

metric part, and the rank-4 tensor is symmetric with respect to the

permutation of each pair of indices. The external symmetry of Djk

coincides with the symmetry of the dielectric susceptibility tensor

(Chapter 1.6). Correspondingly, the third-rank tensors I�jkl and Iþjkl

are similar to the gyration susceptibility and electro-optic tensors

(Chapter 1.6), and Qjlkm has the same tensor form as that for

elastic constants (Chapter 1.3). The symmetry restrictions on

these tensors (determining the number of independent elements

and relationships between tensor elements) are very important

and widely used in practical work on resonant X-ray scattering.

Since they can be found in Chapters 1.3 and 1.6 or in textbooks

(Sirotin & Shaskolskaya, 1982; Nye, 1985), we do not discuss all

possible symmetry cases in the following, but consider in the next

section one specific example for X-ray scattering when the

symmetries of the tensors given by expression (1.11.6.3) do not

coincide with the most general external symmetry that is dictated

by the atomic environment.

1.11.6.3. Hidden internal symmetry of the dipole–quadrupole
tensors in resonant atomic factors

It is fairly obvious from expressions (1.11.6.3) and (1.11.6.16)

that in the non-magnetic case the symmetric and antisymmetric

third-rank tensors, Iþjkl and I�jlk, which describe the dipole–quad-

rupole contribution to the X-ray scattering factor, are not inde-

pendent: the antisymmetric part, which is also responsible for

optical-activity effects, can be expressed via the symmetric part

(but not vice versa). Indeed, both of them can be described by a

symmetric third-rank tensor tijk ¼ tikj resulting from the second-

order Born approximation (1.11.6.3),

Iþijk ¼ ðtijk þ tjikÞ=2; ð1:11:6:17Þ

I�ijk ¼ ðtijk � tjikÞ=2; ð1:11:6:18Þ

where

tijk ¼ �
1
2Iijk: ð1:11:6:19Þ

From equation (1.11.6.17), one can infer that the symmetry

restrictions for Iþijk and tijk are the same. Then it can be seen that

I�ijk can be expressed via Iþijk.

For any symmetry, Iþijk and tijk have the same number of inde-

pendent elements (with a maximum 18 for site symmetry 1).

Thus, one can reverse equation (1.11.6.17) and express tijk directly

in terms of Iþijk:

t111 ¼ Iþ111; t211 ¼ 2Iþ121 � Iþ112; t311 ¼ 2Iþ311 � Iþ113;

t122 ¼ 2Iþ122 � Iþ221; t222 ¼ Iþ222; t322 ¼ 2Iþ232 � Iþ223;

t133 ¼ 2Iþ313 � Iþ331; t233 ¼ 2Iþ233 � Iþ332; t333 ¼ Iþ333;

t123 ¼ Iþ123 þ Iþ312 � Iþ231; t223 ¼ Iþ223; t332 ¼ Iþ332;

t113 ¼ Iþ113; t231 ¼ Iþ231 þ Iþ123 � Iþ312; t331 ¼ Iþ331;

t112 ¼ Iþ112; t221 ¼ Iþ221; t312 ¼ Iþ312 þ Iþ231 � Iþ123:

ð1:11:6:20Þ

Using equations (1.11.6.18) and (1.11.6.20), one can express all

nine elements of I�ijk through Iþijk:

I�231 ¼ Iþ123 � Iþ312; I�232 ¼ Iþ223 � Iþ232; I�233 ¼ Iþ233 � Iþ332;

I�311 ¼ Iþ311 � Iþ113; I�312 ¼ Iþ231 � Iþ123; I�313 ¼ Iþ331 � Iþ313;

I�121 ¼ Iþ112 � Iþ121; I�122 ¼ Iþ122 � Iþ221; I�123 ¼ Iþ312 � Iþ231;

ð1:11:6:21Þ

according to which the antisymmetric part of the dipole–quad-

rupole term is a linear function of the symmetric one [however,

not vice versa: equations (1.11.6.21) cannot be reversed].

Note that the equations (1.11.6.21) impose an additional

restriction on I�ijk, which applies to all atomic site symmetries:

I�123 þ I�231 þ I�312 ¼ 0: ð1:11:6:22Þ

This is, in fact, a well known result: the pseudo-scalar part of I�ijk
vanishes in the dipole–quadrupole approximation used in equa-

tion (1.11.6.3). Thus, for point symmetry 1, I�ijk has only eight

independent elements rather than nine. This additional restric-

tion works in all cases of higher symmetries provided the pseudo-

scalar part is allowed by the symmetry (i.e. point groups 2, 3, 4, 6,

222, 32, 422, 622, 23 and 432). All other symmetry restrictions on

I�ijk arise automatically from equation (1.11.6.21) taking into

account the symmetry of Iþijk [symmetry limitations on Iþijk and I�ijk
for all crystallographic point groups can be found in Sirotin &

Shaskolskaya (1982) and Nye (1985)].

Let us consider two examples, ZnO and anatase, TiO2, where

the dipole–dipole contributions to forbidden reflections vanish,

whereas both the symmetric and antisymmetric dipole-quadru-

pole terms are in principal allowed. In these crystals, the dipole–

quadrupole terms have been measured by Goulon et al. (2007)

and Kokubun et al. (2010).

In ZnO, crystallizing in the wurtzite structure, the 3m

symmetry of the atomic positions imposes the following restric-

tions on tijk:

t131 ¼ t223 ¼ e15; ð1:11:6:23Þ

t222 ¼ �t112 ¼ �t211 ¼ e22; ð1:11:6:24Þ

t311 ¼ t322 ¼ e31; ð1:11:6:25Þ

t333 ¼ e33; ð1:11:6:26Þ

where e15, e31, e22, e33 are energy-dependent complex tensor

elements [keeping the notations by Sirotin & Shaskolskaya

(1982), the x axis is normal to the mirror plane, the y axis is

normal to the glide plane and the z axis corresponds to the c

axis of ZnO]. If we suppose these restrictions for Zn at 1
3 ;

2
3 ; z,

then for the other Zn at 2
3 ;

1
3 ; zþ 1

2, which is related to the first site

by the glide plane, there is the following set of elements:

e15; e31;�e22; e33. Therefore, the structure factors of the glide-

plane forbidden reflections are proportional to e22.

For the symmetric and antisymmetric parts one obtains from

equations (1.11.6.17) and (1.11.6.18) the non-zero components

Iþ131 ¼ Iþ232 ¼ ðe15 þ e31Þ=2; ð1:11:6:27Þ

Iþ222 ¼ �Iþ121 ¼ �Iþ112 ¼ e22; ð1:11:6:28Þ

Iþ113 ¼ Iþ223 ¼ e15; ð1:11:6:29Þ

Iþ333 ¼ e33 ð1:11:6:30Þ

and

I�232 ¼ �I�311 ¼ Iþ113 � Iþ131 ¼ ðe15 � e31Þ=2: ð1:11:6:31Þ

Physically, we can expect that je15 þ e31j � je15 � e31j because

e15 þ e31 survives even for tetrahedral symmetry �43m, whereas

e15 � e31 is non-zero owing to a deviation from tetrahedral
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symmetry; in ZnO, the local coordinations of the Zn positions are

only approximately tetrahedral.

In the anatase structure of TiO2, the �4m2 symmetry of the

atomic positions imposes restrictions on the tensors tijk [keeping

the notations of Sirotin & Shaskolskaia (1982): the x and y axes

are normal to the mirror planes, and the z axis is parallel to the c

axis]:

t131 ¼ �t223 ¼ e15; ð1:11:6:32Þ

t311 ¼ �t322 ¼ e31; ð1:11:6:33Þ

where e15 and e31 are energy-dependent complex parameters. If

we apply these restrictions to the Ti atoms at 0; 0; 0 and 1
2 ;

1
2 ;

1
2,

then for the other two inversion-related Ti atoms at 0; 1
2 ;

1
4 and

1
2 ; 0; 3

4 (centre 2=m), the parameters are �e15 and �e31.

For the symmetric and antisymmetric parts one obtains as non-

vanishing components

Iþ131 ¼ �Iþ232 ¼ ðe15 þ e31Þ=2; ð1:11:6:34Þ

Iþ113 ¼ �Iþ223 ¼ e15 ð1:11:6:35Þ

and

I�232 ¼ I�311 ¼ Iþ131 � Iþ113 ¼ ðe31 � e15Þ=2: ð1:11:6:36Þ

It is important to note that the symmetric part Iþijk of the atomic

factor can be affected by a contribution from thermal-motion-

induced dipole–dipole terms. The latter terms are tensors of rank

3 proportional to the spatial derivatives @f dd
ij =@xk, which take the

same tensor form as Iþijk but are not related to I�ijk by equations

(1.11.6.21). In ZnO, which was studied in detail by Collins et al.

(2003), the thermal-motion-induced contribution is rather

significant, while for anatase the situation is less clear.

1.11.6.4. Tensor structure factors

Once the tensor atomic factors have been determined [either

from phenomenological expressions like (1.11.6.16), according

to the site-symmetry restrictions, or from given microscopic

expressions, e.g. (1.11.4.3)], tensor structure factors are obtained

by summation over the contributions of all atoms in the unit cell,

as in conventional diffraction theory:

FjmðHÞ ¼
P

t;u

otD
tu
jm expð�2�iH � rtuÞ exp½�WtuðHÞ�;

ð1:11:6:37Þ

FþjmnðHÞ ¼
P

t;u

otI
tuþ
jmn expð�2�iH � rtuÞ exp½�WtuðHÞ�;

ð1:11:6:38Þ

F�jmnðHÞ ¼
P

t;u

otI
tu�
jmn expð�2�iH � rtuÞ exp½�WtuðHÞ�;

ð1:11:6:39Þ

FjmnpðHÞ ¼
P

t;u

otQ
tu
jmnp expð�2�iH � rtuÞ exp½�WtuðHÞ�;

ð1:11:6:40Þ

where the index t enumerates the crystallographically different

types of scatterers (atoms belonging to the same or different

chemical elements), the index u denotes the crystallographically

equivalent positions; ot 	 1 is a site-occupancy factor, and

WtuðHÞ is the Debye–Waller temperature factor. The tensors of

the atomic factors, Dtu
jm, Ituþ

jmn , Itu�
jmn , Qtu

jmnp, are, in general, different

for crystallographically equivalent positions, that is for different

u, and it is exactly this difference that enables the excitation of

the resonant forbidden reflections.

Extinction rules and polarization properties for forbidden

reflections are different for tensor structure factors of different

ranks, a circumstance that may be used for experimental

separation of different tensor contributions (for tensors of

rank 2, information is given in Tables 1.11.2.1 and 1.11.2.2).

In the harmonic approximation, anisotropies of the atomic

thermal displacements (Debye–Waller factor) are also described

by tensors of rank 2 or higher, but, owing to these, excitations

of glide-plane and screw-axis forbidden reflections are not

possible.

1.11.6.5. Tensor atomic factors (magnetic case)

Magnetic crystals possess different densities of states with

opposite spin directions. During a multipole transition from the

ground state to an excited state (or the reverse), the projection of

an electron spin does not change, but the projection of the orbital

moment varies. The consideration of all possible transitions

allows for the formulation of the sum rules (Carra et al., 1993;

Strange, 1994) that are widely used in X-ray magnetic circular

dichroism (XMCD). When measuring the differences of the

absorption coefficients at the L2;3 absorption edges of transition

elements or at the M edges of rare-earth elements (Erskine &

Stern, 1975; Schütz et al., 1987; Chen et al., 1990), these rules

allow separation of the spin and orbital contributions to the

XMCD signal, and hence the study of the spin and orbital

moments characterizing the ground state. In magnetic crystals,

the tensors change their sign with time reversal because

p0a 6¼ p0�a if pa 6¼ p�a and/or !ca 6¼ !c�a (Zeeman splitting in a

magnetic field). That the antisymmetric parts of the tensors differ

from zero follows from equations (1.11.6.7), (1.11.6.10) and

(1.11.6.15).

Time reversal also changes the incident and scattered vectors

corresponding to permutation of the Cartesian tensor indices. For

dipole–dipole resonant events, the symmetric part Dþjk does not

vary with exchange of indices, hence it is time- and parity-even.

The antisymmetric part D�jk changes its sign upon permutation of

the indices, so it is parity-even and time-odd, being associated

with a magnetic moment (1.11.6.41). This part of the tensor

is responsible for the existence of X-ray magnetic circular

dichroism (XMCD) and the appearance of the magnetic satellites

in various kinds of magnetic structures.

If the rotation symmetry of a second-rank tensor is completely

described by rotation about the magnetic moment m, then the

antisymmetric second-rank tensor D�jk can be represented as

D�jk ¼ �jklml, where �jmk is an antisymmetric third-rank unit

tensor and ml are the coordinates of the magnetic moment of the

resonant atom. So, the scattering amplitude for the dipole–dipole

E1E1 transition can be given as

f dd ¼ �
e2

mc2

�
ðe0� � eÞC0s þ i½e0� � e� �msC1s

þ ½ðe0� �msÞðe �msÞ �
1
3ðe
0� � eÞ�C2s

	
:

ð1:11:6:41Þ

C0s, C1s and C2s are energy-dependent coefficients referring to the

sth atom in the unit cell and ms is a unit vector along the magnetic

moment. The third term in (1.11.6.41) is time non-reversal, and it

is responsible for the magnetic linear dichroism (XMLD). This
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kind of X-ray dichroism is also influenced by the crystal field

(Thole et al., 1986; van der Laan et al., 1986).

The coefficients C0s, C1s and C2s involved in (1.11.6.41) may be

represented in terms of spherical harmonics. Using the relations

(Berestetskii et al., 1982; Hannon et al., 1988)

½e0� � Y1�1ðk
0ÞY�1�1ðkÞ � e�

¼
3

16�

�
ðe0� � eÞ 
 i½e0� � e� �ms � ðe

0� �msÞðe �msÞ
�

ð1:11:6:42Þ

and

½e0� � Y10ðk
0ÞY�10ðkÞ � e� ¼

3

8�
ðe0� �msÞðe �msÞ ð1:11:6:43Þ

for L ¼ 1, M ¼ �1 and L ¼ 0, M ¼ 0, respectively, one obtains

f dd
s ¼ �

3

4k

�
ðe0� � eÞðF11 þ F1�1Þ � i½e0� � e� �msðF11 � F1�1Þ

þ ðe0� �msÞðe �msÞð2F10 � F11 � F1�1Þ

�
ð1:11:6:44Þ

with

FLMð!Þ ¼
X

a;c

papac

�xðaMc;ELÞ

Ec � Ea � h- !� i�=2
; ð1:11:6:45Þ

where pa is the probability of the initial state a, pac is that for the

transition from state a to a final state c, and �x=� is the ratio of

the partial line width of the excited state due to a pure 2L ðELÞ

radiative decay and the width due to all processes, both radiative

and non-radiative (for example, the Auger decay).

Magnetic ordering is frequently accompanied by a local

anisotropy in the crystal. In this case, both kinds of local aniso-

tropies exist simultaneously and must be taken into account in,

for example, XMLD (van der Laan et al., 1986) and XM�D

(Goulon et al., 2002). In resonant X-ray scattering experiments,

simultaneous existence of forbidden reflections provided by spin

and orbital ordering (Murakami et al., 1998) as well as magnetic

and crystal anisotropy (Ji et al., 2003; Paolasini et al., 2002, 1999)

have been observed. The explicit Cartesian form of the tensor

atomic factor in the presence of both a magnetic moment and

crystal anisotropy has been proposed by Blume (1994). When the

symmetry of the atomic site is high enough, i.e. the atom lies on

an n-order axis (n> 2), then the tensors Dþ and D� can be

represented as

Dþjk ¼ ðzjzk �
1
3�jkÞ½a1 þ b1ðz �mÞ

2
� þ c1ðmjmk �

1
3m

2�jkÞ

þ d1½zjmk þ zkmj �
2
3ðz �mÞ�jkÞ�ðz �mÞ ð1:11:6:46Þ

and

D�jk ¼ i�jkl½a2ml þ b2zlðz �mÞ�; ð1:11:6:47Þ

where ai and bi depend on the energy, and z is a unit vector along

the symmetry axis under consideration. One can see that the

atomic tensor factor is given by a sum of three terms: the first is

due to the symmetry of the local crystal anisotropy, the second

describes pure magnetic scattering, and the last (‘combined’)

term is induced by interference between magnetic and non-

magnetic resonant scattering. This issue was first discussed by

Blume (1994) and later in more detail by Ovchinnikova &

Dmitrienko (1997, 2000). All the terms can give rise to forbidden

reflections, i.e. sets of pure resonant forbidden magnetic and non-

magnetic reflections can be observed for the same crystal, see Ji et

al. (2003) and Paolasini et al. (2002, 1999). Only reflections caused

by the ‘combined’ term (Ovchinnikova & Dmitrienko, 1997) have

not been observed yet.

Neglecting the crystal field, an explicit form of the fourth-rank

tensors describing the quadrupole–quadrupole E2E2 events in

magnetic structures was proposed by Hannon et al. (1988) and

Blume (1994):

Q�ijkm ¼ a1f�iklml�jm þ �jmlml�ik þ �imlml�jk þ �jklml�img

þ b2f�iklmlmjmm þ �jmlmlmimk þ �imlmlmjmk

þ �jklmlmimmg; ð1:11:6:48Þ

Qþijkm ¼ a2�ij�km þ b2f�ik�jm þ �im�jkg

þ c2f�ikmjmm þ �immjmk þ �jmmimk þ �jkmimmg

þ d2f�ijmkmm þ �kmmimjg þ e2mimjmkmm

þ f2f�ikl�jmpmlmp þ �iml�jkpmlmpg: ð1:11:6:49Þ

Then, being convoluted with polarization vectors, the scat-

tering amplitude of the quadrupole transition (L ¼ 2) can be

written as a sum of 13 terms belonging to five orders of magnetic

moments (Hannon et al., 1988; Blume, 1994). The final expression

that gives the quadrupole contribution to the magnetic scattering

amplitude in terms of individual spin components is rather

complicated and can be found, for example, in Hill & McMorrow

(1996). In the presence of both a magnetic moment and local

crystal anisotropy, the fourth-rank tensor describing E2E2 events

depends on both kinds of anisotropy and can include the

‘combined’ part in explicit form, as found by Ovchinnikova &

Dmitrienko (2000).

1.11.6.6. Tensor atomic factors (spherical tensor representation)

Another representation of the scattering amplitude is widely

used in the scientific literature (Hannon et al., 1988; Luo et al.,

1993; Carra et al., 1993; Lovesey & Collins, 1996) for the

description of resonant multipole transitions. In order to obtain

the scattering amplitude and intensity for a resonant process

described by some set of spherical tensor components, the tensor

that describes the atomic scattering must be contracted by a

tensor of the same rank and inversion/time-reversal symmetry

which describes the X-ray probe, so that the result would be a

scalar. There are well known relations between the components

of the atomic factor tensor, both in Cartesian and spherical

representations. For the dipole–dipole transition, the resonant

scattering amplitude can be written as (Hannon et al., 1988;

Collins et al., 2007; Paolasini, 2012; Joly et al., 2012)

f dd �
P

jm

e0�j emDjm ¼
P2

p¼0

Pp

q¼�p

ð�1Þpþq
X ðpÞq FðpÞ�q; ð1:11:6:50Þ

where Djm are the Cartesian tensor components, X ðpÞq depends

only on the incident and scattered radiation and the polarization

vectors, and FðpÞ�q is associated with the tensor properties of the

absorbing atom and can be represented in terms of a multipole

expansion.

It is convenient to decompose each tensor into its irreducible

parts. For example, an E1E1 tensor containing nine Cartesian

components can be represented as a sum of three irreducible

tensors with ranks p ¼ 0 (one component), p ¼ 1 (three

components) and p ¼ 2 (five components). This decomposition is

unique.
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For p ¼ 0:

F
ð0Þ
0 ¼

1
3ðDxx þDyy þDzzÞ: ð1:11:6:51Þ

For p ¼ 1:

F
ð1Þ
0 ¼

1
2ðDxy �DyxÞ;

F
ð1Þ
�1 ¼ 


1
2
ffiffi
2
p ½ðDyz �Dzy 
 iðDxz �DzxÞ�: ð1:11:6:52Þ

For p ¼ 2:

F
ð2Þ
0 ¼ Dzz � F

ð0Þ
0 ;

F
ð2Þ
�1 ¼ 


1
2

ffiffi
2
3

q
½ðDxz þDzx 
 iðDyz þDzyÞ�; ð1:11:6:53Þ

F
ð2Þ
�2 ¼

1
6½2Dxx � 2Dyy � iðDxy þDyxÞ�: ð1:11:6:54Þ

It follows from (1.11.6.14) that the fourth-rank tensor

describing the quadrupole–quadrupole X-ray scattering can also

be divided into two parts: the time-reversal part, Qþjklm, and the

non-time-reversal part, Q�jklm. Both can be explicitly represented

by (1.11.6.3) and (1.11.6.2), in which all these tensors are parity-

even. The explicit form of the fourth-rank tensors is suitable for

the analysis of possible effects in resonant X-ray absorption and

scattering. Nevertheless, sometimes the following representation

of the scattering amplitude as a product of spherical tensors is

preferable:

f qq ¼ 1
4

P

ijmn

e0�i emk0jknQijmn ¼
P4

p¼0

Pp

q¼�p

ð�1Þpþq
X ðpÞq FðpÞ�q: ð1:11:6:55Þ

Here, the dipole–quadrupole tensor atomic factor given by

(1.11.6.10) is represented by a sum over several tensors with

different symmetries. All tensors are parity-odd, but the tensors

I��jml and I�þjml are also non-time-reversal. The scattering amplitude

corresponding to the dipole–quadrupole resonant X-ray scat-

tering can be represented as

f dq ¼ 1
2i
P

ijm

e0�i ejðkmIijm � k0mIjimÞ

¼
P3

p¼1

Pp

q¼�p

ð�1Þpþq
ðX ðpÞq FðpÞ�q þ

�X ðpÞq
�FðpÞ�qÞ: ð1:11:6:56Þ

The explicit form of FðpÞ�q can be found in Marri & Carra (2004).

Various parts of FðpÞ�q possess different symmetry with respect to

the reversal of space P and time T.

The spherical representation of the tensor atomic factor allows

one to analyse its various components, as they possess different

symmetries with respect to rotations or space and time inversion.

For each p, FðpÞ�q is related to a specific term of the multipole

expansion of the system. Multipole expansions of electric and

magnetic fields generated by charges and permanent currents are

widely used in characterizing the electromagnetic state of a

physical system (Berestetskii et al., 1982). The transformation

rules for electric and magnetic multipoles of both parities under

space inversion and time reversal are of great importance for

electromagnetic effects in crystals. The correspondence between

the FðpÞ�q and electromagnetic multipoles is shown in Table

1.11.6.2. In this table, the properties of the tensors FðpÞ�q under

time reversal and space inversion on one side are identified

with multipole terms describing the physical system on the

other. In fact, for any given tensor of rank p ¼ 1; 2; 3; 4 there is

one electromagnetic multipole of the same rank (1! dipole,

2! quadrupole, 3! octupole, 4! hexadecapole) and

with the same T and P properties. Note that P-odd E1E2

tensors have both T-odd (�) and T-even (+) terms for any p,

whereas P-even tensors (both E1E1 and E2E2) are T-odd for

odd rank and T-even for even rank, respectively (Di Matteo et

al., 2005).

An important contribution of Luo et al. (1993) and Carra et al.

(1993) consisted of expressing the amplitude coefficients in terms

of experimentally significant quantities, electron spin and orbital

moments. This procedure is valid within the fast-collision

approximation, when either the deviation from resonance,

�E ¼ Ec � Ea � h- !, or the width, �, is large compared to the

splitting of the excited-state configuration. The approximation is

expected to hold for the L2 and L3 edges of the rare earths and

actinides, as well as for the M4 and M5 edges of the actinides. In

this energy regime, the resonant factors can be summed inde-

pendently, leaving amplitude coefficients that may be written in

terms of multipole moment operators, which are themselves

single-particle operators summed over the valence electrons in

the initial state.

Magnetic scattering has become a powerful method for

understanding magnetic structures (Tonnere, 1996; Paolasini,

2012), particularly as it is suitable even for powder samples

(Collins et al., 1995). Since the first studies (Gibbs et al., 1988),

resonant magnetic X-ray scattering has been observed at various

edges of transition metals and rare earths. The studies include

magnetics and multiferroics with commensurate and incom-

mensurate modulation (Walker et al., 2009; Kim et al., 2011; Ishii

et al., 2006; Partzsch et al., 2012; Lander, 2012; Beale et al., 2012;

Lovesey et al., 2012; Mazzoli et al., 2007) as well as multi-k

magnetic structures (Bernhoeft et al., 2012), and structures with

orbital ordering (Murakami et al., 1998) and higher-order

multipoles (Princep et al., 2011). It has also been shown that

effects can be measured not only at the edges of magnetic atoms

[K edges of transition metals, L edges of rare-earth elements and

M edges of actinides (Vettier, 2001, 2012)], but also at the edges

of non-magnetic atoms (Mannix et al., 2001; van Veenendaal,

2003).

Thus, magnetic and non-magnetic resonant X-ray diffraction

clearly has the potential to be an important working tool in

modern materials research. The advantage of polarized X-rays is

their sensitivity to both the local atomic environments of reso-

nant atoms and their partial structures. The knowledge of the

local and global crystal symmetries and of the interplay of their

effects is therefore of great value for a better understanding of

structural, electronic and magnetic features of crystalline

condensed matter.
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Table 1.11.6.2. Identification of properties under time inversion T and space
inversion P of tensors associated with multipole expansion

After Di Matteo et al. (2005) and Paolasini (2012).

Rank of
tensor

Resonant
process T P Type Multipole

0 E1E1 + + charge monopole
0 E2E2 + + charge monopole
1 E1E1 � + magnetic dipole
1 E2E2 � + magnetic dipole
1 E1E2 + � electric dipole
1 E1E2 � � polar toroidal dipole
2 E1E1 + + electric quadrupole
2 E2E2 + + electric quadrupole
2 E1E2 + � axial toroidal quadrupole
2 E1E2 � � magnetic quadrupole
3 E2E2 � + magnetic octupole
3 E1E2 + � electric octupole
3 E1E2 � � polar toroidal octupole
4 E2E2 + + electric hexadecapole
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