List of terms and symbols used in this volume

(1) Vector spaces and tensor analysis	
Basis vectors in direct space (covariant)	$\mathbf{e}_{i}, \mathbf{a}_{i}$
Basis vectors in reciprocal space (contravariant)	$\mathbf{e}^{i}, \mathbf{a}_{i}^{*}$
Contravariant components of vectors in direct space	x^{i}
Covariant components of vectors in reciprocal space	x_{i}
Direction indices (of a lattice row)	[uvw]
Dual (or reciprocal) space (n dimensions)	E_{n} (Chapter 1.1)
Element of	E
Euclidian space, direct space (n dimensions)	E^{n}
Hermitian conjugate of matrix M	M^{+}
Integers (positive)	\mathbb{Z}^{+}
Integers (ring of)	\mathbb{Z}
Kronecker symbol	δ_{i}^{j}
Metric tensor	$g_{i j}$
Miller indices (of a lattice plane)	(hkl)
Nabla operator	∇
Orthogonal transformation	R
Outer product	\wedge
Partial derivative with respect to x_{i}	∂_{i}
Permutation tensor	$\varepsilon_{i j k}, \hat{e}_{i j k}$
Position vector in reciprocal space	G, \mathbf{k}
Reciprocal lattice vector	$\mathbf{g}_{h k l}$
Sum of spaces	\oplus
Tensor of rank n, p times covariant and q times contravariant ($n=p+q$)	$t_{i_{1} \ldots \ldots i_{p}}^{j_{1} \ldots j_{q}}$
Tensor product	*
Transpose of matrix M	M^{T}
Unit transformation, matrix or element	E
Vector in superspace	$\mathbf{a s i}_{\text {si }}$
Vector in reciprocal superspace	$\mathbf{a s i}_{\text {si }}^{*}$
Vector product	\wedge, \times
Volume element	$\mathrm{d} \tau$
Volume of unit cell in direct (reciprocal) space	$V\left(V^{*}\right)$

(2) Group theory	
Character	χ
Character (irreducible)	χ_{α}
Character (value at R)	$\chi(R)$
Class multiplication constants	$c_{i j k}$
Conjugacy class	C_{i}
Cyclic group of order m	C_{m}
Dihedral group of order $2 n$	D_{n}
Dimension of irreducible representation α	d_{α}
Lattice translation subgroup	$T(n)$
Matrix representation of point group K	$\Gamma(K)$
Multiplicity	m_{α}
Octahedral group	O
Order of class C_{i}	n_{i}
Orthogonal group	$O(n)$
Orthogonal group (special)	$S O(n)$
Physically irreducible representation	R-irep
Point group	$K($ Chapter 1.2),
	$G_{o}($ Chapter 2.1),
Point group (order of)	$G($ Part 3)
	$\|K\|, N$

Representation of point group K	$D(K)$
Space group	$G, \mathcal{G}($ Part 3)
Tetrahedral group	T

(3) Physical properties	
(a) Elastic properties	
Bulk modulus (volume isothermal compressibility)	κ
Components of the displacement vector	u_{i}
Elastic compliances (second-order)	$s_{i j k l}$
Elastic compliances (second-order adiabatic)	$\left(s_{i j k l}\right)^{\sigma}$
Elastic compliances (second-order reduced)	$s_{\alpha \beta}$
Elastic compliances (third-order)	$s_{i j k l m n}$
Elastic stiffnesses (second-order)	$c_{i j k l}, C_{i j k l}$
Elastic stiffnesses (second-order adiabatic)	$\left(c_{i j k l}\right)^{\sigma}$
Elastic stiffnesses (second-order reduced)	$c_{\alpha \beta}$
Elastic stiffnesses (third-order)	$c_{i j k l m n}$
Lamé coefficients	λ
Normal stress	\vec{v}
Poisson's ratio	v
Pressure	p
Shear stress	$\vec{\tau}$
Strain tensor	$S_{i j}, u_{i j}$, (Chapters
	$1.4,1.5$ and 3.1),
	$\eta_{i j}($ Chapter 2.3)
Strain Voigt matrix	S_{α}
Stress tensor	$T_{i j}, \tau_{i j}($ Chapter
	$1.4), \sigma_{i j}$ (Chapters
	$2.1,2.3,2.4)$
Stress Voigt matrix	T_{α}
Velocity of sound	v
Volume	V
Volumic mass	ρ
Young's modulus	E

(b) Electric properties	
Charge density	$\rho(\mathbf{r})$
Charge of the electron	e
Current density	$\mathbf{j}(\mathbf{r}), J$
Dielectric impermeability	$\eta_{i j}$
Dielectric permittivity or constant	ε
Dielectric permittivity of vacuum	ε_{0}
Dielectric permittivity tensor	$\varepsilon_{i j}$
Dielectric permittivity tensor (adiabatic)	$\left(\varepsilon_{i j}\right)^{\sigma}$
Dielectric susceptibility	$\chi_{i j}, \chi_{i k \ldots}$
Dielectric susceptibility (nth-order)	$\chi^{(n)}$
Effective mass of the electron	m^{*}
Electric dipole operator	\hat{p}
Electric displacement	\mathbf{D}
Electric field	\mathbf{E}
Electric polarization	\mathbf{P}
Electric polarization (nth-order)	\mathbf{P}_{n}
Electric polarization (nonlinear)	\mathbf{P}^{NL}
Electro-optic tensor	$r_{i j k}$
Electrostriction tensor	$Q_{i j k l}$
Electrostriction tensor (reduced)	$Q_{\alpha \beta}$
Hall constant	$R_{H}{ }_{i j k}$
Piezoelectric tensor	$d_{i j k}$

Piezoelectric tensor at constant strain	$e_{i j k}$	Refractive index of light	n
Piezoelectric tensor (reduced)	$d_{i \alpha}$	Refractive index (ordinary)	n_{0}
Piezoelectric tensor (reduced adiabatic)	$\left(d_{i j k}\right)^{\sigma}$	Refractive indices for biaxial indicatrix	$n_{x}, n_{\alpha}, \alpha ; n_{y}, n_{\beta}, \beta$;
Piezoelectric tensor (reduced inverse)	$d_{\alpha i}$		$n_{z}, n_{\gamma}, \gamma$
Pyroelectric tensor	p_{i}	Velocity of light in a vacuum	c
		Velocity (group)	v_{g}
		Wavelength of light	λ
(c) Magnetic properties		Wavevector of light propagating in crystal	$\mathbf{k}(\|k\|=2 \pi / \lambda)$
Antiferromagnetic vector	\mathbf{L}_{i}		
Bohr magneton	μ_{B}		
Constant describing magnetostriction	λ		
Effective number of Bohr magnetons	p (Section 1.6.1)	(e) Thermodynamic properties	
Landé g-factor	g	Anisotropy energy	U_{a}
Magnetic birefringence	Δn	Atomic Debye-Waller factor (static)	S_{α}
Magnetic field	H	Atomic Debye-Waller factor (thermal)	T_{α}
Magnetic induction	B	Boltzmann constant	k_{B}
Magnetic moment	μ	Debye frequency	ω_{D}
Magnetic moment density	$\mathbf{m}(\mathbf{r})$	Debye temperature	Θ_{D}
Magnetic permeability	$\mu_{i j}$	Einstein frequency	ω_{E}
Magnetic permeability of vacuum	μ_{o}	Einstein temperature	Θ_{E}
Magnetic susceptibility	$\chi_{i j}, \chi_{i j}^{m}$	Elastic energy	$U_{\text {el }}$
Magnetization (= magnetic moment per unit		Entropy	σ, S
volume $=$ ferromagnetic vector)	M	Free energy	$\mathcal{G}, \mathcal{F}, F, A$
Magnetoelastic energy	$U_{\text {me }}$	Grüneisen parameter	$\bar{\gamma}, \gamma$
Magnetoelectric tensor (linear)	$\alpha_{i j}$	Grüneisen parameter (averaged mode)	$\gamma_{\mathbf{q}, j}$
Magnetoelectric tensor (nonlinear) EHH	$\beta_{i j k}$	Grüneisen parameter (generalized mode)	$\gamma_{\mathbf{q}, k l}$
Magnetoelectric tensor (nonlinear) HEE	$\gamma_{i j k}$	Hamiltonian	H
Magneto-optic tensor	f	Heat current	J_{Q}
Néel temperature	T_{N}	Internal energy	U, \mathcal{U}
Orbital angular momentum	\mathbf{L} (Section 1.6.1.1)	Lattice energy	$E_{\text {ph }}$
Piezomagnetic components	$\Lambda_{i j k}$	Partition function	Z
Piezomagnetic components (reduced)	$\Lambda_{i \alpha}$	Phonon wavevector	q
Piezomagnetoelectric tensor	$\pi_{i j k l}$	Seebeck coefficient	S
Spin angular momentum (of an atom or ion)	S	Specific heat at constant strain (volume)	c^{S}, c_{V}
Spin density	S(r)	Specific heat at constant stress (pressure)	c^{T}, c_{p}
Sum of the magnetic moments in a unit cell	m	Specific heat at constant volume (according to the	
Sum of the magnetic moments in a unit cell, in which some of the moments are taken with opposite sign	\mathbf{l}_{i}	Debye model) Specific heat at constant volume (according to the Einstein model)	$c_{V}^{\text {Debye }}$ $c_{V}^{\text {Einstein }}$
Total angular momentum	J	Temperature	Θ, T
Weiss constant	Δ	Temperature-stress components	$\lambda_{i j}$
		Thermal conductivity	K
		Thermal expansion	$\alpha_{i j}$
		Thermal expansion (volume)	β
(d) Optical properties		Thermodynamic potential	Φ
Angle between optic axes	2 V	Zero-point energy	E_{o}
Cyclic (or circular) frequency	ω		
Elasto-optic (strain-optic) tensor	$p_{i j k l}$		
Elasto-optic (strain-optic) tensor, reduced	$p_{\alpha \beta}$		
Electro-optic tensor	$r_{i j k}$		
Ellipticity of wave	κ	(f) Local crystal susceptibilities	
Gyration susceptibility	$\gamma_{i j l}$	Local susceptibility tensor in direct space	$\chi(\mathbf{r})$
Gyration tensor	$g_{i j}, G_{i j}$	Fourier components of the local	$\chi(\mathbf{H})$
Gyration vector	G	susceptibility tensor	
Optical rotatory power	ρ	Dipole-dipole tensor atomic factor	$D_{j k}$
Phase difference of light	Δ	Symmetric part of the dipole-dipole tensor	$D_{j k}^{+}$
Piezo-optic tensor	$\pi_{i j k l}$	atomic factor	
Piezo-optic tensor (reduced)	$\pi_{\alpha \beta}$	Antisymmetric part of the dipole-dipole	$D_{j k}^{-}$
Polarizability operator	$\hat{\alpha}$	tensor atomic factor	
Poynting vector	S	Third-rank tensor describing the dipole-	$I_{j k l}$
Poynting vector (unit)	$\mathbf{s , ~} \hat{\mathbf{s}}$	quadrupole resonant X-ray scattering	
Raman tensor	$R^{j}(\mathbf{q})$	Part of the third-rank tensor invariant	$I_{j k l}^{++}$
Rayleigh length	Z_{r}	under time inversion and symmetric	
Refractive index (extraordinary)	n_{e}	under the permutation of j and k	

LIST OF TERMS AND SYMBOLS

Part of the third-rank tensor non-invariant under time inversion and symmetric	$I_{j k l}^{+-}$	Space group of ferroic (low-symmetry) phase	$\begin{aligned} & \mathcal{F} \text { (Chapters } 3.1 \\ & \text { and } 3.4) \end{aligned}$
under the permutation of j and k		Space group of parent (high-symmetry)	\mathcal{G}
Part of the third-rank tensor invariant	$I_{j k l}^{-+}$	phase	
under time inversion and antisymmetric		Symmetry descent from G to F (point groups)	$G \Downarrow F$
under the permutation of j and k		Symmetry descent from \mathcal{G} to \mathcal{F} (space groups)	$\mathcal{G} \Downarrow \mathcal{F}$
Part of the third-rank tensor non-invariant under time inversion and antisymmetric	$I_{j k l}^{--}$	Eigensymmetry of untwinned crystal or daughter phase	\mathcal{H} (Chapter 3.3)
under the permutation of j and k Fourth-rank tensor describing the quadrupole-	$Q_{i j k l}$	Transition temperature, in particular: Curie temperature	T_{C}
quadrupole resonant X-ray scattering		Order of group $\mathcal{G}, \mathcal{H}, \mathcal{K}$	$\|\mathcal{G}\|,\|\mathcal{H}\|,\|\mathcal{K}\|$
		Index of \mathcal{H} in \mathcal{G}, or of \mathcal{H} in \mathcal{K}	[i]
		Aizu symbol of a ferroic phase transition (ferroic species); $F=$ ferroic	$\mathcal{G F H}$ or $\mathcal{G}>F$
(4) Phase transformations and twinning		Composite symmetry group of a twinned	\mathcal{K}
Order parameter (primary)	η	crystal (domain pair); twin symmetry	
Order parameter (secondary)	λ	Reduced composite symmetry of the domain	$\mathcal{K}_{1,2}^{*}, \mathcal{K}^{*}$
Point group of ferroic (low-symmetry) phase	F (Chapters 3.1	pair (1, 2)	
	and 3.4)	Extended composite symmetry of a twinned	$\mathcal{K}(n)$
Point group of parent (high-symmetry) phase	G	crystal with a pseudo n-fold twin axis	

