Tables for
Volume E
Subperiodic groups
Edited by V. Kopský and D. B. Litvin

International Tables for Crystallography (2006). Vol. E, ch. 1.2, p. 22   | 1 | 2 |

Section 1.2.16. Nomenclature

V. Kopskýa and D. B. Litvinb*

aDepartment of Physics, University of the South Pacific, Suva, Fiji, and Institute of Physics, The Academy of Sciences of the Czech Republic, Na Slovance 2, PO Box 24, 180 40 Prague 8, Czech Republic, and bDepartment of Physics, Penn State Berks Campus, The Pennsylvania State University, PO Box 7009, Reading, PA 19610-6009, USA
Correspondence e-mail:

1.2.16. Nomenclature

| top | pdf |

There exists a wide variety of nomenclature for layer, rod and frieze groups (Holser, 1961[link]). Layer-group nomenclature includes zweidimensionale Raumgruppen (Alexander & Herrmann, 1929a[link],b[link]), Ebenengruppen (Weber, 1929[link]), Netzgruppen (Hermann, 1929a[link]), net groups (IT, 1952[link]; Opechowski, 1986[link]), reversal space groups in two dimensions (Cochran, 1952[link]), plane groups in three dimensions (Dornberger-Schiff, 1956[link], 1959[link]; Belov, 1959[link]), black and white space groups in two dimensions (Mackay, 1957[link]), (two-sided) plane groups (Holser, 1958[link]), Schichtgruppen (Niggli, 1959[link]; Chapuis, 1966[link]), diperiodic groups in three dimensions (Wood, 1964a[link],b[link]), layer space groups (Shubnikov & Koptsik, 1974[link]), layer groups (Köhler, 1977[link]; Koch & Fischer, 1978[link]; Vainshtein, 1981[link]; Goodman, 1984[link]; Litvin, 1989[link]), two-dimensional (subperiodic) groups in three-dimensional space (Brown et al., 1978[link]) and plane space groups in three dimensions (Grell et al., 1989[link]).

Rod-group nomenclature includes Kettengruppen (Hermann, 1929a[link],b[link]), eindimensionalen Raumgruppen (Alexander, 1929[link], 1934[link]), (crystallographic) line groups in three dimensions (IT, 1952[link]; Opechowski, 1986[link]), rod groups (Belov, 1956[link]; Vujicic et al., 1977[link]; Köhler, 1977[link]; Koch & Fischer, 1978[link]), Balkengruppen (Niggli, 1959[link]; Chapuis, 1966[link]), stem groups (Galyarskii & Zamorzaev, 1965[link]), linear space groups (Bohm & Dornberger-Schiff, 1966[link]) and one-dimensional (subperiodic) groups in three dimensions (Brown et al., 1978[link]).

Frieze-group nomenclature includes Bortenornamente (Speiser, 1927[link]), Bandgruppen (Niggli, 1959[link]), line groups (borders) in two dimensions (IT, 1952[link]), line groups in a plane (Belov, 1956[link]), eindimensionale `zweifarbige' Gruppen (Nowacki, 1960[link]), groups of one-sided bands (Shubnikov & Koptsik, 1974[link]), ribbon groups (Köhler, 1977[link]), one-dimensional (subperiodic) groups in two-dimensional space (Brown et al., 1978[link]) and groups of borders (Vainshtein, 1981[link]).


International Tables for X-ray Crystallography (1952). Vol. I. Symmetry groups, edited by N. F. M. Henry & K. Lonsdale. Birmingham: Kynoch Press. [Revised editions: 1965, 1969 and 1977. Abbreviated as IT (1952).]Google Scholar
Alexander, E. (1929). Systematik der eindimensionalen Raumgruppen. Z. Kristallogr. 70, 367–382.Google Scholar
Alexander, E. (1934). Bemerkung zur Systematik der eindimensionalen Raumgruppen. Z. Kristallogr. 89, 606–607.Google Scholar
Alexander, E. & Herrmann, K. (1929a). Zur Theorie der flussigen Kristalle. Z. Kristallogr. 69, 285–299.Google Scholar
Alexander, E. & Herrmann, K. (1929b). Die 80 zweidimensionalen Raumgruppen. Z. Kristallogr. 70, 328–345, 460.Google Scholar
Belov, N. V. (1959). On the nomenclature of the 80 plane groups in three dimensions. Sov. Phys. Crystallogr. 4, 730–733.Google Scholar
Belov, N. V. (1956). On one-dimensional infinite crystallographic groups. Kristallografia, 1, 474–476. [Reprinted in: Colored Symmetry. (1964). Edited by W. T. Holser. New York: Macmillan.]Google Scholar
Bohm, J. & Dornberger-Schiff, K. (1966). The nomenclature of crystallographic symmetry groups. Acta Cryst. 21, 1004–1007.Google Scholar
Brown, H., Bulow, R., Neubuser, J., Wondratschek, H. & Zassenhaus, H. (1978). Crystallographic groups of four-dimensional space. New York: Wiley.Google Scholar
Chapuis, G. (1966). Anwendung der Raumgruppenmatrizen auf die ein- und zweifach periodischen Symmetriegruppen in drei Dimensionen. Diplomarbeit, University of Zurich, Switzerland.Google Scholar
Cochran, W. (1952). The symmetry of real periodic two-dimensional functions. Acta Cryst. 5, 630–633.Google Scholar
Dornberger-Schiff, K. (1956). On order–disorder structures (OD-structures). Acta Cryst. 9, 593–601.Google Scholar
Dornberger-Schiff, K. (1959). On the nomenclature of the 80 plane groups in three dimensions. Acta Cryst. 12, 173.Google Scholar
Galyarskii, E. I. & Zamorzaev, A. M. (1965). A complete derivation of crystallographic stem groups of symmetry and different types of antisymmetry. Kristallografiya, 10, 147–154. (Sov. Phys. Crystallogr. 10, 109–115.)Google Scholar
Goodman, P. (1984). A retabulation of the 80 layer groups for electron diffraction usage. Acta Cryst. A40, 635–642.Google Scholar
Grell, H., Krause, C. & Grell, J. (1989). Tables of the 80 plane space groups in three dimensions. Berlin: Akademie der Wissenschaften der DDR.Google Scholar
Hermann, C. (1929a). Zur systematischen Strukturtheorie. III. Ketten- und Netzgruppen. Z. Kristallogr. 69, 259–270.Google Scholar
Hermann, C. (1929b). Zur systematischen Struckturtheorie. IV. Untergruppen. Z. Kristallogr. 69, 533–555.Google Scholar
Holser, W. T. (1958). Point groups and plane groups in a two-sided plane and their subgroups. Z. Kristallogr. 110, 266–281.Google Scholar
Holser, W. T. (1961). Classification of symmetry groups. Acta Cryst. 14, 1236–1242.Google Scholar
Koch, E. & Fischer, W. (1978). Complexes for crystallographic point groups, rod groups and layer groups. Z. Kristallogr. 147, 21–38.Google Scholar
Köhler, K. J. (1977). Untergruppen kristallographischer Gruppen. Dissertation, RWTH, Aachen, Germany.Google Scholar
Litvin, D. B. (1989). International-like tables for layer groups. In Group theoretical methods in physics, edited by Y. Saint-Aubin & L. Vinet, pp. 274–276. Singapore: World Scientific.Google Scholar
Mackay, A. L. (1957). Extensions of space-group theory. Acta Cryst. 10, 543–548.Google Scholar
Niggli, A. (1959). Zur Systematik und gruppentheoretischen Ableitung der Symmetrie-, Antisymmetrie- und Entartungssymmetriegruppen. Z. Kristallogr. 111, 288–300.Google Scholar
Nowacki, W. (1960). Öberblick über `zweifarbige' Symmetriegruppen. Fortschr. Mineral. 38, 96–107.Google Scholar
Opechowski, W. (1986). Crystallographic and metacrystallographic groups. Amsterdam: North Holland.Google Scholar
Shubnikov, A. V. & Koptsik, V. A. (1974). Symmetry in science and art. New York: Plenum.Google Scholar
Speiser, A. (1927). Die Theorie der Gruppen von endlicher Ordnung. 2nd ed. Berlin: Springer.Google Scholar
Vainshtein, B. K. (1981). Modern crystallography I. Berlin: Springer-Verlag.Google Scholar
Vujicic, M., Bozovic, I. B. & Herbut, F. (1977). Construction of the symmetry groups of polymer molecules. J. Phys. A, 10, 1271–1279.Google Scholar
Weber, L. (1929). Die Symmetrie homogener ebener Punktsysteme. Z. Kristallogr. 70, 309–327.Google Scholar
Wood, E. (1964a). The 80 diperiodic groups in three dimensions. Bell Syst. Tech. J. 43, 541–559.Google Scholar
Wood, E. (1964b). The 80 diperiodic groups in three dimensions. Bell Telephone Technical Publications, Monograph 4680.Google Scholar

to end of page
to top of page