Origin at centre (4/m)
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 2 0, 0, z | (3) 4+ 0, 0, z | (4) 4- 0, 0, z |
(5) -1 0, 0, 0 | (6) m x, y, 0 | (7) -4+ 0, 0, z; 0, 0, 0 | (8) -4- 0, 0, z; 0, 0, 0 |
Generators selected (1); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -y, x, z | (4) y, -x, z | (5) -x, -y, -z | (6) x, y, -z | (7) y, -x, -z | (8) -y, x, -z |
| no conditions |
| | Special: no extra conditions |
| x, y, 1/2 | -x, -y, 1/2 | -y, x, 1/2 | y, -x, 1/2 |
| |
| x, y, 0 | -x, -y, 0 | -y, x, 0 | y, -x, 0 |
| |
| | |
| | |
| | |
Symmetry of special projections
Along [001] 4
Origin at 0, 0, z | Along [100] 2mm a' = c Origin at x, 0, 0 | Along [110] 2mm a' = c Origin at x, x, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] -4 (27) | 1; 2; 7; 8 |
| [2] 4 (23) | 1; 2; 3; 4 |
| [2] 112/m (11) | 1; 2; 5; 6 |
IIb | [2] 42/m (c' = 2c) (29) |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [2] 4/m (c' = 2c) (28) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 4/mmm (39); [2] 4/mcc (40) |