
Origin at centre (2/m) on 42
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 2 0, 0, z | (3) 4+(1/2) 0, 0, z | (4) 4-(1/2) 0, 0, z |
(5) -1 0, 0, 0 | (6) m x, y, 0 | (7) -4+ 0, 0, z; 0, 0, 1/4 | (8) -4- 0, 0, z; 0, 0, 1/4 |
Generators selected (1); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -y, x, z + 1/2 | (4) y, -x, z + 1/2 | (5) -x, -y, -z | (6) x, y, -z | (7) y, -x, -z + 1/2 | (8) -y, x, -z + 1/2 |
| l: l = 2n
|
| | Special: no extra conditions |
| x, y, 0 | -x, -y, 0 | -y, x, 1/2 | y, -x, 1/2 |
| |
| 0, 0, z | 0, 0, z + 1/2 | 0, 0, -z | 0, 0, -z + 1/2 |
| |
| | |
| | |
Symmetry of special projections
Along [001] 4
Origin at 0, 0, z | Along [100] 2mm a' = c Origin at x, 0, 0 | Along [110] 2mm a' = c Origin at x, x, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] -4 (27) | 1; 2; 7; 8 |
| [2] 42 (25) | 1; 2; 3; 4 |
| [2] 112/m (11) | 1; 2; 5; 6 |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [3] 42/m (c' = 3c) (29) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 42/mmc (41) |
II | [2] 4/m (c' = 1/2c) (28) |