Origin on 4cc
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 2 0, 0, z | (3) 4+ 0, 0, z | (4) 4- 0, 0, z |
(5) c x, 0, z | (6) c 0, y, z | (7) c x, -x, z | (8) c x, x, z |
Generators selected (1); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -y, x, z | (4) y, -x, z | (5) x, -y, z + 1/2 | (6) -x, y, z + 1/2 | (7) -y, -x, z + 1/2 | (8) y, x, z + 1/2 |
| l: l = 2n
|
| | Special: no extra conditions |
| | |
Symmetry of special projections
Along [001] 4mm
Origin at 0, 0, z | Along [100] 11m a' = 1/2c Origin at x, 0, 0 | Along [110] 11m a' = 1/2c Origin at x, x, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] 411 (4, 23) | 1; 2; 3; 4 |
| [2] 2c1 (cc2, 16) | 1; 2; 5; 6 |
| [2] 21c (cc2, 16) | 1; 2; 7; 8 |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [3] 4cc (c' = 3c) (36) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 4/mcc (40) |
II | [2] 4mm (c' = 1/2c) (34) |