Origin on 2[210] at 321(1,1,2)
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 3+(2/3) 0, 0, z | (3) 3-(1/3) 0, 0, z |
(4) 2 x, -x, 1/6 | (5) 2 x, 2x, 1/3 | (6) 2 2x, x, 0 |
Generators selected (1); t(0, 0, 1); (2); (4)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -y, x - y, z + 2/3 | (3) -x + y, -x, z + 1/3 | (4) -y, -x, -z + 1/3 | (5) -x + y, y, -z + 2/3 | (6) x, x - y, -z |
| l: l = 3n
|
| | Special: no extra conditions |
| x, -x, 1/6 | x, 2x, 5/6 | -(2x), -x, 1/2 |
| |
| x, -x, 2/3 | x, 2x, 1/3 | -(2x), -x, 0 |
| |
Symmetry of special projections
Along [001] 3m
Origin at 0, 0, z | Along [100] 1m1 a' = c Origin at x, 0, 1/3 | Along [210] 211 a' = c Origin at x, 1/2x, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] 3211 (32, 44) | 1; 2; 3 |
| [3] 112 (211, 3) | 1; 4 |
| [3] 112 (211, 3) | 1; 5 |
| [3] 112 (211, 3) | 1; 6 |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [2] 3112 (c' = 2c) (47); [7] 3212 (c' = 7c) (48) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 6222 (64); [2] 6522 (67) |
II | [3] 312 (c' = 1/3c) (46) |