Origin on 3c1
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) c x, -x, z | (5) c x, 2x, z | (6) c 2x, x, z |
Generators selected (1); t(0, 0, 1); (2); (4)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) -y, -x, z + 1/2 | (5) -x + y, y, z + 1/2 | (6) x, x - y, z + 1/2 |
| l: l = 2n
|
| | Special: no extra conditions |
| | |
Symmetry of special projections
Along [001] 3m
Origin at 0, 0, z | Along [100] 1 a' = 1/2c Origin at x, 0, 0 | Along [210] 11g a' = c Origin at x, 1/2x, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] 311 (3, 42) | 1; 2; 3 |
| [3] 1c1 (c11, 5) | 1; 4 |
| [3] 1c1 (c11, 5) | 1; 5 |
| [3] 1c1 (c11, 5) | 1; 6 |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [3] 3c1 (c' = 3c) (50) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] -31c (52); [2] 6cc (69); [2] 63mc (70); [2] -6c2 (72) |
II | [2] 3m1 (c' = 1/2c) (49) |