Origin at -6
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) m x, y, 0 | (5) -6- 0, 0, z; 0, 0, 0 | (6) -6+ 0, 0, z; 0, 0, 0 |
Generators selected (1); t(0, 0, 1); (2); (4)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) x, y, -z | (5) -y, x - y, -z | (6) -x + y, -x, -z |
| no conditions |
| | Special: no extra conditions |
| x, y, 1/2 | -y, x - y, 1/2 | -x + y, -x, 1/2 |
| |
| x, y, 0 | -y, x - y, 0 | -x + y, -x, 0 |
| |
| | |
| | |
| | |
Symmetry of special projections
Along [001] 3
Origin at 0, 0, z | Along [100] 1m1 a' = c Origin at x, 0, 0 | Along [210] 1m1 a' = c Origin at x, 1/2x, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] 3 (42) | 1; 2; 3 |
| [3] 11m (10) | 1; 4 |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [2] -6 (c' = 2c) (59) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 6/m (60); [2] 63/m (61); [2] -6m2 (71); [2] -6c2 (72) |