Origin on 3m1 on 63mc
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1; y ≤ x/2 |
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) 2(1/2) 0, 0, z | (5) 6-(1/2) 0, 0, z | (6) 6+(1/2) 0, 0, z |
(7) m x, -x, z | (8) m x, 2x, z | (9) m 2x, x, z |
(10) c x, x, z | (11) c x, 0, z | (12) c 0, y, z |
Generators selected (1); t(0, 0, 1); (2); (4); (7)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) -x, -y, z + 1/2 | (5) y, -x + y, z + 1/2 | (6) x - y, x, z + 1/2 | (7) -y, -x, z | (8) -x + y, y, z | (9) x, x - y, z | (10) y, x, z + 1/2 | (11) x - y, -y, z + 1/2 | (12) -x, -x + y, z + 1/2 |
| l: l = 2n
|
| | Special: no extra conditions |
| x, -x, z | x, 2x, z | -(2x), -x, z | -x, x, z + 1/2 | -x, -(2x), z + 1/2 | 2x, x, z + 1/2 |
| |
| | |
Symmetry of special projections
Along [001] 6mm
Origin at 0, 0, z | Along [100] 11g a' = c Origin at x, 0, 0 | Along [210] 11m a' = 1/2c Origin at x, 1/2x, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] 6311 (63, 56) | 1; 2; 3; 4; 5; 6 |
| [2] 31c (3c1, 50) | 1; 2; 3; 10; 11; 12 |
| [2] 3m1 (49) | 1; 2; 3; 7; 8; 9 |
| [3] 21mc (mc21, 17) | 1; 4; 7; 10 |
| [3] 21mc (mc21, 17) | 1; 4; 8; 11 |
| [3] 21mc (mc21, 17) | 1; 4; 9; 12 |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [3] 63mc (c' = 3c) (70) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 63/mmc (75) |
II | [2] 6mm (c' = 1/2c) (68) |
Origin on 31m on 63cm
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1; y ≤ x/2 |
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) 2(1/2) 0, 0, z | (5) 6-(1/2) 0, 0, z | (6) 6+(1/2) 0, 0, z |
(7) c x, -x, z | (8) c x, 2x, z | (9) c 2x, x, z |
(10) m x, x, z | (11) m x, 0, z | (12) m 0, y, z |
Generators selected (1); t(0, 0, 1); (2); (4); (7)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) -x, -y, z + 1/2 | (5) y, -x + y, z + 1/2 | (6) x - y, x, z + 1/2 | (7) -y, -x, z + 1/2 | (8) -x + y, y, z + 1/2 | (9) x, x - y, z + 1/2 | (10) y, x, z | (11) x - y, -y, z | (12) -x, -x + y, z |
| l: l = 2n
|
| | Special: no extra conditions |
| x, 0, z | 0, x, z | -x, -x, z | -x, 0, z + 1/2 | 0, -x, z + 1/2 | x, x, z + 1/2 |
| |
| | |
Symmetry of special projections
Along [001] 6mm
Origin at 0, 0, z | Along [100] 11m a' = 1/2c Origin at x, 0, 0 | Along [210] 11g a' = c Origin at x, 1/2x, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] 6311 (63, 56) | 1; 2; 3; 4; 5; 6 |
| [2] 3c1 (50) | 1; 2; 3; 7; 8; 9 |
| [2] 31m (3m1, 49) | 1; 2; 3; 10; 11; 12 |
| [3] 21cm (mc21, 17) | 1; 4; 7; 10 |
| [3] 21cm (mc21, 17) | 1; 4; 8; 11 |
| [3] 21cm (mc21, 17) | 1; 4; 9; 12 |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [3] 63cm (c' = 3c) (63mc, 70) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 63/mmc (75) |
II | [2] 6mm (c' = 1/2c) (68) |