Origin on 2
Asymmetric unit |
0 ≤ x ≤ 1; 0 ≤ y ≤ 1/2 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) x, -y, -z |
|
no conditions |
|
|
Special: no extra conditions |
|
|
|
|
|
|
Symmetry of special projections
Along [001] p1m1
a' = bp b' = -a
Origin at 0, 0, z |
Along [100] 211
a' = b
Origin at x, 0, 0 |
Along [010] 11m
a' = a
Origin at 0, y, 0 |
Maximal non-isotypic subgroups
IIb |
[2] c211 (a' = 2a, b' = 2b) (10); [2] p2111 (a' = 2a) (9) |
Maximal isotypic subgroups of lowest index
IIc |
[2] p211 (a' = 2a) (8); [2] p211 (b' = 2b) (8) |
Minimal non-isotypic supergroups
I |
[2] p2/m11 (14); [2] p2/b11 (16); [2] p222 (19); [2] p2122 (20); [2] pm2m (27); [2] pb2b (30); [2] pm2a (31); [2] pb2n (34) |