Origin at -1 on 21
Asymmetric unit |
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1 |
(1) 1 |
(2) 2(1/2, 0, 0) x, 0, 0 |
(3) -1 0, 0, 0 |
(4) m 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (3)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) x + 1/2, -y, -z |
(3) -x, -y, -z |
(4) -x + 1/2, y, z |
|
h0: h = 2n
|
|
|
Special: as above, plus |
|
|
no extra conditions |
|
|
hk: h = 2n
|
|
|
hk: h = 2n
|
Symmetry of special projections
Along [001] p2mg
a' = a b' = bp
Origin at 0, 0, z |
Along [100] 211
a' = b
Origin at x, 0, 0 |
Along [010] 2mg
a' = a
Origin at 0, y, 0 |
Maximal non-isotypic subgroups
I |
[2] pm11 (11) |
1; 4 |
|
[2] p2111 (9) |
1; 2 |
|
[2] p-1 (2) |
1; 3 |
IIb |
[2] p21/b11 (b' = 2b) (17) |
Maximal isotypic subgroups of lowest index
IIc |
[2] p21/m11 (b' = 2b) (15); [3] p21/m11 (a' = 3a) (15) |
Minimal non-isotypic supergroups
I |
[2] pmam (40); [2] pmma (41); [2] pbma (45); [2] pmmn (46) |
II |
[2] c2/m11 (18); [2] p2/m11 (a' = 1/2a) (14) |