Origin at centre (2/m)
Asymmetric unit |
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2 |
For (0, 0, 0)+ set
(1) 1 |
(2) 2 x, 0, 0 |
(3) -1 0, 0, 0 |
(4) m 0, y, z |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) |
(2) 2(1/2, 0, 0) x, 1/4, 0 |
(3) -1 1/4, 1/4, 0 |
(4) b 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(1/2, 1/2, 0); (2); (3)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
(0, 0, 0)+ (1/2, 1/2, 0)+ |
General:
|
|
(1) x, y, z |
(2) x, -y, -z |
(3) -x, -y, -z |
(4) -x, y, z |
|
hk: h + k = 2n
h0: h = 2n
0k: k = 2n
|
|
|
Special: as above, plus |
|
|
no extra conditions |
|
|
no extra conditions |
|
|
hk: k = 2n
|
|
|
no extra conditions |
|
|
no extra conditions |
Symmetry of special projections
Along [001] c2mm
a' = a b' = bp
Origin at 0, 0, z |
Along [100] 211
a' = 1/2b
Origin at x, 0, 0 |
Along [010] 2mm
a' = 1/2a
Origin at 0, y, 0 |
Maximal non-isotypic subgroups
I |
[2] cm11 (13) |
(1; 4)+ |
|
[2] c211 (10) |
(1; 2)+ |
|
[2] c-1 (p-1, 2) |
(1; 3)+ |
IIa |
[2] p21/b11 (17) |
1; 3; (2; 4) + (1/2, 1/2, 0) |
|
[2] p2/b11 (16) |
1; 2; (3; 4) + (1/2, 1/2, 0) |
|
[2] p21/m11 (15) |
1; 4; (2; 3) + (1/2, 1/2, 0) |
|
[2] p2/m11 (14) |
1; 2; 3; 4 |
Maximal isotypic subgroups of lowest index
IIc |
[3] c2/m11 (a' = 3a) (18) |
Minimal non-isotypic supergroups
I |
[2] cmmm (47); [2] cmme (48); [3] p-31m (71); [3] p-3m1 (72) |
II |
[2] p2/m11 (a' = 1/2a, b' = 1/2b) (14) |