Origin at intersection of 2 with perpendicular plane containing 21 axes
Asymmetric unit |
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2 |
(1) 1 |
(2) 2 0, 0, z |
(3) 2(0, 1/2, 0) 1/4, y, 0 |
(4) 2(1/2, 0, 0) x, 1/4, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (3)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -x, -y, z |
(3) -x + 1/2, y + 1/2, -z |
(4) x + 1/2, -y + 1/2, -z |
|
h0: h = 2n
0k: k = 2n
|
|
|
Special: as above, plus |
|
|
hk: h + k = 2n
|
|
|
hk: h + k = 2n
|
Symmetry of special projections
Along [001] p2gg
a' = a b' = b
Origin at 0, 0, z |
Along [100] 2mg
a' = b
Origin at x, 1/4, 0 |
Along [010] 2mg
a' = a
Origin at 1/4, y, 0 |
Maximal non-isotypic subgroups
I |
[2] p1211 (p2111, 9) |
1; 3 |
|
[2] p2111 (9) |
1; 4 |
|
[2] p112 (3) |
1; 2 |
Maximal isotypic subgroups of lowest index
IIc |
[3] p21212 (a' = 3a or b' = 3b) (21) |
Minimal non-isotypic supergroups
I |
[2] pbam (44); [2] pmmn (46); [2] p4212 (54); [2] p-421m (58) |
II |
[2] c222 (22); [2] p2212 (a' = 1/2a) (p2122, 20) |