
Origin on mm2
Asymmetric unit |
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2 |
(1) 1 |
(2) 2 0, 0, z |
(3) m x, 0, z |
(4) m 0, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (3)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -x, -y, z |
(3) x, -y, z |
(4) -x, y, z |
|
no conditions |
|
|
Special: no extra conditions |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Symmetry of special projections
Along [001] p2mm
a' = a b' = b
Origin at 0, 0, z |
Along [100] 1m1
a' = b
Origin at x, 0, 0 |
Along [010] 1m1
a' = a
Origin at 0, y, 0 |
Maximal non-isotypic subgroups
I |
[2] p1m1 (pm11, 11) |
1; 3 |
|
[2] pm11 (11) |
1; 4 |
|
[2] p112 (3) |
1; 2 |
IIb |
[2] cmm2 (a' = 2a, b' = 2b) (26); [2] pma2 (a' = 2a) (24); [2] pbm2 (b' = 2b) (pma2, 24) |
Maximal isotypic subgroups of lowest index
IIc |
[2] pmm2 (a' = 2a or b' = 2b) (23) |
Minimal non-isotypic supergroups
I |
[2] pmmm (37); [2] pmma (41); [2] pmmn (46); [2] p4mm (55); [2] p-4m2 (59) |