
Origin on 1a2
Asymmetric unit |
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1 |
(1) 1 |
(2) 2 0, 0, z |
(3) a x, 0, z |
(4) m 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (3)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -x, -y, z |
(3) x + 1/2, -y, z |
(4) -x + 1/2, y, z |
|
h0: h = 2n
|
|
|
Special: as above, plus |
|
|
no extra conditions |
|
|
hk: h = 2n
|
|
|
hk: h = 2n
|
Symmetry of special projections
Along [001] p2mg
a' = a b' = b
Origin at 0, 0, z |
Along [100] 1m1
a' = b
Origin at x, 0, 0 |
Along [010] 1m1
a' = 1/2a
Origin at 0, y, 0 |
Maximal non-isotypic subgroups
I |
[2] p1a1 (pb11, 12) |
1; 3 |
|
[2] pm11 (11) |
1; 4 |
|
[2] p112 (3) |
1; 2 |
IIb |
[2] pba2 (b' = 2b) (25) |
Maximal isotypic subgroups of lowest index
IIc |
[2] pma2 (b' = 2b) (24); [3] pma2 (a' = 3a) (24) |
Minimal non-isotypic supergroups
I |
[2] pmaa (38); [2] pmam (40); [2] pman (42); [2] pbma (45) |
II |
[2] cmm2 (26); [2] pmm2 (a' = 1/2a) (23) |