Origin on m2m
Asymmetric unit |
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z |
(1) 1 |
(2) 2 0, y, 0 |
(3) m 0, y, z |
(4) m x, y, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (3)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -x, y, -z |
(3) -x, y, z |
(4) x, y, -z |
|
no conditions |
|
|
Special: no extra conditions |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Symmetry of special projections
Along [001] p1m1
a' = a b' = b
Origin at 0, 0, z |
Along [100] 11m
a' = b
Origin at x, 0, 0 |
Along [010] 2mm
a' = a
Origin at 0, y, 0 |
Maximal non-isotypic subgroups
I |
[2] pm11 (11) |
1; 3 |
|
[2] p121 (p211, 8) |
1; 2 |
|
[2] p11m (4) |
1; 4 |
IIb |
[2] cm2e (a' = 2a, b' = 2b) (36); [2] cm2m (a' = 2a, b' = 2b) (35); [2] pm2a (a' = 2a) (31); [2] pb2b (b' = 2b) (30); [2] pb21m (b' = 2b) (29); [2] pm21b (b' = 2b) (28) |
Maximal isotypic subgroups of lowest index
IIc |
[2] pm2m (a' = 2a) (27); [2] pm2m (b' = 2b) (27) |
Minimal non-isotypic supergroups
I |
[2] pmmm (37); [2] pmam (40); [3] p-6m2 (78); [3] p-62m (79) |