Origin on b2b
Asymmetric unit |
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z |
(1) 1 |
(2) 2 0, y, 0 |
(3) b x, y, 0 |
(4) b 0, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (3)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -x, y, -z |
(3) x, y + 1/2, -z |
(4) -x, y + 1/2, z |
|
hk: k = 2n
0k: k = 2n
|
|
|
Special: no extra conditions |
|
1/2, y, 0 |
1/2, y + 1/2, 0 |
|
|
|
|
|
Symmetry of special projections
Along [001] p1m1
a' = a b' = 1/2b
Origin at 0, 0, z |
Along [100] 11m
a' = 1/2b
Origin at x, 0, 0 |
Along [010] 2mm
a' = a
Origin at 0, y, 0 |
Maximal non-isotypic subgroups
I |
[2] pb11 (12) |
1; 4 |
|
[2] p121 (p211, 8) |
1; 2 |
|
[2] p11b (p11a, 5) |
1; 3 |
IIb |
[2] pb2n (a' = 2a) (34) |
Maximal isotypic subgroups of lowest index
IIc |
[2] pb2b (a' = 2a) (30); [3] pb2b (b' = 3b) (30) |
Minimal non-isotypic supergroups
I |
[2] pmaa (38); [2] pbaa (43) |
II |
[2] cm2e (36); [2] pm2m (b' = 1/2b) (27) |