
Origin on m2m
Asymmetric unit |
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z |
For (0, 0, 0)+ set
(1) 1 |
(2) 2 0, y, 0 |
(3) m 0, y, z |
(4) m x, y, 0 |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) |
(2) 2(0, 1/2, 0) 1/4, y, 0 |
(3) b 1/4, y, z |
(4) n(1/2, 1/2, 0) x, y, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(1/2, 1/2, 0); (2); (3)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
(0, 0, 0)+ (1/2, 1/2, 0)+ |
General:
|
|
(1) x, y, z |
(2) -x, y, -z |
(3) -x, y, z |
(4) x, y, -z |
|
hk: h + k = 2n
h0: h = 2n
0k: k = 2n
|
|
|
Special: no extra conditions |
|
|
|
|
|
|
|
|
|
Symmetry of special projections
Along [001] c1m1
a' = a b' = b
Origin at 0, 0, z |
Along [100] 11m
a' = 1/2b
Origin at x, 0, 0 |
Along [010] 2mm
a' = 1/2a
Origin at 0, y, 0 |
Maximal non-isotypic subgroups
I |
[2] cm11 (13) |
(1; 3)+ |
|
[2] c121 (c211, 10) |
(1; 2)+ |
|
[2] c11m (p11m, 4) |
(1; 4)+ |
IIa |
[2] pb2n (34) |
1; 2; (3; 4) + (1/2, 1/2, 0) |
|
[2] pm21n (32) |
1; 3; (2; 4) + (1/2, 1/2, 0) |
|
[2] pb21m (29) |
1; 4; (2; 3) + (1/2, 1/2, 0) |
|
[2] pm2m (27) |
1; 2; 3; 4 |
Maximal isotypic subgroups of lowest index
IIc |
[3] cm2m (a' = 3a) (35); [3] cm2m (b' = 3b) (35) |
Minimal non-isotypic supergroups
II |
[2] pm2m (a' = 1/2a, b' = 1/2b) (27) |