Origin at centre (2/m) at 2/m1n
Asymmetric unit |
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4 |
(1) 1 |
(2) 2(0, 1/2, 0) 1/4, y, 0 |
(3) 2 1/4, 1/4, z |
(4) 2 x, 0, 0 |
(5) -1 0, 0, 0 |
(6) a x, 1/4, z |
(7) n(1/2, 1/2, 0) x, y, 0 |
(8) m 0, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (3); (5)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -x + 1/2, y + 1/2, -z |
(3) -x + 1/2, -y + 1/2, z |
(4) x, -y, -z |
(5) -x, -y, -z |
(6) x + 1/2, -y + 1/2, z |
(7) x + 1/2, y + 1/2, -z |
(8) -x, y, z |
|
hk: h + k = 2n
h0: h = 2n
0k: k = 2n
|
|
|
Special: as above, plus |
|
0, y, z |
1/2, y + 1/2, -z |
1/2, -y + 1/2, z |
0, -y, -z |
|
no extra conditions |
|
1/4, 1/4, z |
1/4, 3/4, -z |
3/4, 3/4, -z |
3/4, 1/4, z |
|
hk: h = 2n
|
|
x, 0, 0 |
-x + 1/2, 1/2, 0 |
-x, 0, 0 |
x + 1/2, 1/2, 0 |
|
no extra conditions |
|
|
no extra conditions |
|
|
no extra conditions |
Symmetry of special projections
Along [001] c2mm
a' = a b' = b
Origin at 0, 0, z |
Along [100] 2mg
a' = b
Origin at x, 0, 0 |
Along [010] 2mm
a' = 1/2a
Origin at 0, y, 0 |
Maximal non-isotypic subgroups
I |
[2] p2an (pb2n, 34) |
1; 4; 6; 7 |
|
[2] pm21n (32) |
1; 2; 7; 8 |
|
[2] pma2 (24) |
1; 3; 6; 8 |
|
[2] p2212 (p2122, 20) |
1; 2; 3; 4 |
|
[2] p121/a1 (p21/b11, 17) |
1; 2; 5; 6 |
|
[2] p2/m11 (14) |
1; 4; 5; 8 |
|
[2] p112/n (p112/a, 7) |
1; 3; 5; 7 |
Maximal isotypic subgroups of lowest index
IIc |
[3] pman (a' = 3a) (42); [3] pman (b' = 3b) (42) |
Minimal non-isotypic supergroups
II |
[2] cmmm (47); [2] pmaa (b' = 1/2b) (38); [2] pmma (b' = 1/2b) (41) |