
Origin at centre (2/m)
Asymmetric unit |
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z |
(1) 1 |
(2) 2 0, 0, z |
(3) 2(0, 1/2, 0) 1/4, y, 0 |
(4) 2(1/2, 0, 0) x, 1/4, 0 |
(5) -1 0, 0, 0 |
(6) m x, y, 0 |
(7) a x, 1/4, z |
(8) b 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (3); (5)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -x, -y, z |
(3) -x + 1/2, y + 1/2, -z |
(4) x + 1/2, -y + 1/2, -z |
(5) -x, -y, -z |
(6) x, y, -z |
(7) x + 1/2, -y + 1/2, z |
(8) -x + 1/2, y + 1/2, z |
|
0k: k = 2n
h0: h = 2n
|
|
|
Special: as above, plus |
|
x, y, 0 |
-x, -y, 0 |
-x + 1/2, y + 1/2, 0 |
x + 1/2, -y + 1/2, 0 |
|
no extra conditions |
|
0, 1/2, z |
1/2, 0, -z |
0, 1/2, -z |
1/2, 0, z |
|
hk: h + k = 2n
|
|
0, 0, z |
1/2, 1/2, -z |
0, 0, -z |
1/2, 1/2, z |
|
hk: h + k = 2n
|
|
|
hk: h + k = 2n
|
|
|
hk: h + k = 2n
|
Symmetry of special projections
Along [001] p2gg
a' = a b' = b
Origin at 0, 0, z |
Along [100] 2mm
a' = 1/2b
Origin at x, 0, 0 |
Along [010] 2mm
a' = 1/2a
Origin at 0, y, 0 |
Maximal non-isotypic subgroups
I |
[2] pb21m (29) |
1; 3; 6; 8 |
|
[2] p21am (pb21m, 29) |
1; 4; 6; 7 |
|
[2] pba2 (25) |
1; 2; 7; 8 |
|
[2] p21212 (21) |
1; 2; 3; 4 |
|
[2] p121/a1 (p21/b11, 17) |
1; 3; 5; 7 |
|
[2] p21/b11 (17) |
1; 4; 5; 8 |
|
[2] p112/m (6) |
1; 2; 5; 6 |
Maximal isotypic subgroups of lowest index
IIc |
[3] pbam (a' = 3a or b' = 3b) (44) |
Minimal non-isotypic supergroups
II |
[2] cmmm (47); [2] pmam (b' = 1/2b) (40) |