Origin on 4 at -1/2, 0, 0 from 222 at 212
Asymmetric unit |
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z |
(1) 1 |
(2) 2 0, 0, z |
(3) 4+ 0, 0, z |
(4) 4- 0, 0, z |
(5) 2(0, 1/2, 0) 1/4, y, 0 |
(6) 2(1/2, 0, 0) x, 1/4, 0 |
(7) 2(1/2, 1/2, 0) x, x, 0 |
(8) 2(1/2, 1/2, 0) x, -x, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (3); (5)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -x, -y, z |
(3) -y, x, z |
(4) y, -x, z |
(5) -x + 1/2, y + 1/2, -z |
(6) x + 1/2, -y + 1/2, -z |
(7) y + 1/2, x + 1/2, -z |
(8) -y + 1/2, -x + 1/2, -z |
|
h0: h = 2n
0k: k = 2n
|
|
|
Special: as above, plus |
|
x, x + 1/2, 0 |
-x, -x + 1/2, 0 |
-x + 1/2, x, 0 |
x + 1/2, -x, 0 |
|
no extra conditions |
|
0, 1/2, z |
1/2, 0, z |
1/2, 0, -z |
0, 1/2, -z |
|
hk: h + k = 2n
|
|
|
hk: h + k = 2n
|
|
|
hk: h + k = 2n
|
Symmetry of special projections
Along [001] p4gm
a' = a b' = b
Origin at 0, 0, z |
Along [100] 2mg
a' = b
Origin at x, 1/4, 0 |
Along [110] 2mm
a' = 1/2(-a + b)
Origin at x, x, 0 |
Maximal non-isotypic subgroups
I |
[2] p411 (p4, 49) |
1; 2; 3; 4 |
|
[2] p212 (c222, 22) |
1; 2; 7; 8 |
|
[2] p2211 (p21212, 21) |
1; 2; 5; 6 |
Maximal isotypic subgroups of lowest index
IIc |
[9] p4212 (a' = 3a, b' = 3b) (54) |
Minimal non-isotypic supergroups
I |
[2] p4/mbm (63); [2] p4/nmm (64) |