Origin at -4m2
Asymmetric unit |
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z |
(1) 1 |
(2) 2 0, 0, z |
(3) -4+ 0, 0, z; 0, 0, 0 |
(4) -4- 0, 0, z; 0, 0, 0 |
(5) m x, 0, z |
(6) m 0, y, z |
(7) 2 x, x, 0 |
(8) 2 x, -x, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (3); (5)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -x, -y, z |
(3) y, -x, -z |
(4) -y, x, -z |
(5) x, -y, z |
(6) -x, y, z |
(7) y, x, -z |
(8) -y, -x, -z |
|
no conditions |
|
|
Special: |
|
x, 1/2, z |
-x, 1/2, z |
1/2, -x, -z |
1/2, x, -z |
|
no extra conditions |
|
x, 0, z |
-x, 0, z |
0, -x, -z |
0, x, -z |
|
no extra conditions |
|
x, x, 0 |
-x, -x, 0 |
x, -x, 0 |
-x, x, 0 |
|
no extra conditions |
|
|
hk: h + k = 2n
|
|
|
no extra conditions |
|
|
no extra conditions |
|
|
no extra conditions |
|
|
no extra conditions |
Symmetry of special projections
Along [001] p4mm
a' = a b' = b
Origin at 0, 0, z |
Along [100] 1m1
a' = b
Origin at x, 0, 0 |
Along [110] 2mm
a' = 1/2(-a + b)
Origin at x, x, 0 |
Maximal non-isotypic subgroups
I |
[2] p-411 (p-4, 50) |
1; 2; 3; 4 |
|
[2] p2m1 (pmm2, 23) |
1; 2; 5; 6 |
|
[2] p212 (c222, 22) |
1; 2; 7; 8 |
IIb |
[2] c-4m21 (a' = 2a, b' = 2b) (p-421m, 58); [2] c-4m2 (a' = 2a, b' = 2b) (p-42m, 57) |
Maximal isotypic subgroups of lowest index
IIc |
[9] p-4m2 (a' = 3a, b' = 3b) (59) |
Minimal non-isotypic supergroups
I |
[2] p4/mmm (61); [2] p4/nmm (64) |