Origin on 3m1
Asymmetric unit |
0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; x ≤ 2y; y ≤ min(1 - x, 2x) |
Vertices |
|
(1) 1 |
(2) 3+ 0, 0, z |
(3) 3- 0, 0, z |
(4) m x, -x, z |
(5) m x, 2x, z |
(6) m 2x, x, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (4)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -y, x - y, z |
(3) -x + y, -x, z |
(4) -y, -x, z |
(5) -x + y, y, z |
(6) x, x - y, z |
|
no conditions |
|
|
Special: no extra conditions |
|
x, -x, z |
x, 2x, z |
-(2x), -x, z |
|
|
|
|
|
|
|
|
|
|
|
Symmetry of special projections
Along [001] p3m1
a' = a b' = b
Origin at 0, 0, z |
Along [100] 111
a' = 1/2(a + 2b)
Origin at x, 0, 0 |
Along [210] 1m1
a' = 1/2b
Origin at x, 1/2x, 0 |
Maximal non-isotypic subgroups
I |
[2] p311 (p3, 65) |
1; 2; 3 |
|
[3] p1m1 (cm11, 13) |
1; 4 |
|
[3] p1m1 (cm11, 13) |
1; 5 |
|
[3] p1m1 (cm11, 13) |
1; 6 |
IIb |
[3] h3m1 (a' = 3a, b' = 3b) (p31m, 70) |
Maximal isotypic subgroups of lowest index
IIc |
[4] p3m1 (a' = 2a, b' = 2b) (69) |
Minimal non-isotypic supergroups
I |
[2] p-3m1 (72); [2] p6mm (77); [2] p-6m2 (78) |