Origin on 6
Asymmetric unit |
0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; x ≤ (1 + y)/2; y ≤ min(1 - x, x) |
Vertices |
0, 0 |
1/2, 0 |
2/3, 1/3 |
1/2, 1/2 |
|
(1) 1 |
(2) 3+ 0, 0, z |
(3) 3- 0, 0, z |
(4) 2 0, 0, z |
(5) 6- 0, 0, z |
(6) 6+ 0, 0, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (4)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -y, x - y, z |
(3) -x + y, -x, z |
(4) -x, -y, z |
(5) y, -x + y, z |
(6) x - y, x, z |
|
no conditions |
|
|
Special: no extra conditions |
|
1/2, 0, z |
0, 1/2, z |
1/2, 1/2, z |
|
|
|
|
|
|
|
|
Symmetry of special projections
Along [001] p6
a' = a b' = b
Origin at 0, 0, z |
Along [100] 1m1
a' = 1/2(a + 2b)
Origin at x, 0, 0 |
Along [210] 1m1
a' = 1/2b
Origin at x, 1/2x, 0 |
Maximal non-isotypic subgroups
I |
[2] p3 (65) |
1; 2; 3 |
|
[3] p211 (p112, 3) |
1; 4 |
Maximal isotypic subgroups of lowest index
IIc |
[3] h6 (a' = 3a, b' = 3b) (p6, 73) |
Minimal non-isotypic supergroups
I |
[2] p6/m (75); [2] p622 (76); [2] p6mm (77) |