Origin at -6
Asymmetric unit |
0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; x ≤ (1 + y)/2; y ≤ min(1 - x, (1 + x)/2); 0 ≤ z |
Vertices |
0, 0 |
1/2, 0 |
2/3, 1/3 |
1/3, 2/3 |
0, 1/2 |
|
(1) 1 |
(2) 3+ 0, 0, z |
(3) 3- 0, 0, z |
(4) m x, y, 0 |
(5) -6- 0, 0, z; 0, 0, 0 |
(6) -6+ 0, 0, z; 0, 0, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (4)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -y, x - y, z |
(3) -x + y, -x, z |
(4) x, y, -z |
(5) -y, x - y, -z |
(6) -x + y, -x, -z |
|
no conditions |
|
|
Special: no extra conditions |
|
x, y, 0 |
-y, x - y, 0 |
-x + y, -x, 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Symmetry of special projections
Along [001] p3
a' = a b' = b
Origin at 0, 0, z |
Along [100] 11m
a' = 1/2(a + 2b)
Origin at x, 0, 0 |
Along [210] 11m
a' = 1/2b
Origin at x, 1/2x, 0 |
Maximal non-isotypic subgroups
I |
[2] p3 (65) |
1; 2; 3 |
|
[3] pm11 (p11m, 4) |
1; 4 |
Maximal isotypic subgroups of lowest index
IIc |
[3] h-6 (a' = 3a, b' = 3b) (p-6, 74) |
Minimal non-isotypic supergroups
I |
[2] p6/m (75); [2] p-6m2 (78); [2] p-62m (79) |