Origin on 6mm
Asymmetric unit |
0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/3; x ≤ (1 + y)/2; y ≤ x/2 |
Vertices |
|
(1) 1 |
(2) 3+ 0, 0, z |
(3) 3- 0, 0, z |
(4) 2 0, 0, z |
(5) 6- 0, 0, z |
(6) 6+ 0, 0, z |
(7) m x, -x, z |
(8) m x, 2x, z |
(9) m 2x, x, z |
(10) m x, x, z |
(11) m x, 0, z |
(12) m 0, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (4); (7)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -y, x - y, z |
(3) -x + y, -x, z |
(4) -x, -y, z |
(5) y, -x + y, z |
(6) x - y, x, z |
(7) -y, -x, z |
(8) -x + y, y, z |
(9) x, x - y, z |
(10) y, x, z |
(11) x - y, -y, z |
(12) -x, -x + y, z |
|
no conditions |
|
|
Special: no extra conditions |
|
x, -x, z |
x, 2x, z |
-(2x), -x, z |
-x, x, z |
-x, -(2x), z |
2x, x, z |
|
|
|
x, 0, z |
0, x, z |
-x, -x, z |
-x, 0, z |
0, -x, z |
x, x, z |
|
|
|
1/2, 0, z |
0, 1/2, z |
1/2, 1/2, z |
|
|
|
|
|
|
|
|
Symmetry of special projections
Along [001] p6mm
a' = a b' = b
Origin at 0, 0, z |
Along [100] 1m1
a' = 1/2(a + 2b)
Origin at x, 0, 0 |
Along [210] 1m1
a' = 1/2b
Origin at x, 1/2x, 0 |
Maximal non-isotypic subgroups
I |
[2] p611 (p6, 73) |
1; 2; 3; 4; 5; 6 |
|
[2] p31m (70) |
1; 2; 3; 10; 11; 12 |
|
[2] p3m1 (69) |
1; 2; 3; 7; 8; 9 |
|
[3] p2mm (cmm2, 26) |
1; 4; 7; 10 |
|
[3] p2mm (cmm2, 26) |
1; 4; 8; 11 |
|
[3] p2mm (cmm2, 26) |
1; 4; 9; 12 |
Maximal isotypic subgroups of lowest index
IIc |
[3] h6mm (a' = 3a, b' = 3b) (p6mm, 77) |
Minimal non-isotypic supergroups