Origin at -6m2
Asymmetric unit |
0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; x ≤ 2y; y ≤ min(1 - x, 2x); 0 ≤ z |
Vertices |
|
(1) 1 |
(2) 3+ 0, 0, z |
(3) 3- 0, 0, z |
(4) m x, y, 0 |
(5) -6- 0, 0, z; 0, 0, 0 |
(6) -6+ 0, 0, z; 0, 0, 0 |
(7) m x, -x, z |
(8) m x, 2x, z |
(9) m 2x, x, z |
(10) 2 x, -x, 0 |
(11) 2 x, 2x, 0 |
(12) 2 2x, x, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2); (4); (7)
Multiplicity, Wyckoff letter,
Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -y, x - y, z |
(3) -x + y, -x, z |
(4) x, y, -z |
(5) -y, x - y, -z |
(6) -x + y, -x, -z |
(7) -y, -x, z |
(8) -x + y, y, z |
(9) x, x - y, z |
(10) -y, -x, -z |
(11) -x + y, y, -z |
(12) x, x - y, -z |
|
no conditions |
|
|
Special: no extra conditions |
|
x, -x, z |
x, 2x, z |
-(2x), -x, z |
x, -x, -z |
x, 2x, -z |
-(2x), -x, -z |
|
|
|
x, y, 0 |
-y, x - y, 0 |
-x + y, -x, 0 |
-y, -x, 0 |
-x + y, y, 0 |
x, x - y, 0 |
|
|
|
x, -x, 0 |
x, 2x, 0 |
-(2x), -x, 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Symmetry of special projections
Along [001] p3m1
a' = a b' = b
Origin at 0, 0, z |
Along [100] 11m
a' = 1/2(a + 2b)
Origin at x, 0, 0 |
Along [210] 2mm
a' = 1/2b
Origin at x, 1/2x, 0 |
Maximal non-isotypic subgroups
I |
[2] p-611 (p-6, 74) |
1; 2; 3; 4; 5; 6 |
|
[2] p3m1 (69) |
1; 2; 3; 7; 8; 9 |
|
[2] p312 (67) |
1; 2; 3; 10; 11; 12 |
|
[3] pmm2 (cm2m, 35) |
1; 4; 7; 10 |
|
[3] pmm2 (cm2m, 35) |
1; 4; 8; 11 |
|
[3] pmm2 (cm2m, 35) |
1; 4; 9; 12 |
IIb |
[3] h-6m2 (a' = 3a, b' = 3b) (p-62m, 79) |
Maximal isotypic subgroups of lowest index
IIc |
[4] p-6m2 (a' = 2a, b' = 2b) (78) |
Minimal non-isotypic supergroups