International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 10.2, pp. 202-208   | 1 | 2 |
https://doi.org/10.1107/97809553602060000673

Chapter 10.2. Cryocrystallography techniques and devices

D. W. Rodgersa*

a Department of Biochemistry, Chandler Medical Center, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0298, USA
Correspondence e-mail: rodgers@focus.gws.uky.edu

References

First citation Abdel-Meguid, S. S., Jeruzalmi, D. & Sanderson, M. R. (1996). Crystallographic methods and protocols, edited by C. Jones, B. Mulloy & M. R. Sanderson, pp. 55–87. New Jersey: Humana Press.Google Scholar
First citation Bishop, W. H. & Richards, F. M. (1968). Properties of liquids in small pores. Rates of diffusion of some solutes in cross-linked crystals of β-lactoglobin. J. Mol. Biol. 38, 315–328.Google Scholar
First citation Dewan, J. C. & Tilton, R. F. (1987). Greatly reduced radiation damage in ribonuclease crystals mounted on glass fibres. J. Appl. Cryst. 20, 130–132.Google Scholar
First citation Engel, C., Wierenga, R. & Tucker, P. A. (1996). A removable arc for mounting and recovering flash-cooled crystals. J. Appl. Cryst. 29, 208–210.Google Scholar
First citation Fink, A. L. & Petsko, G. A. (1981). X-ray cryoenzymology. Adv. Enzymol. Relat. Areas Mol. Biol. 52, 177–246.Google Scholar
First citation Garman, E. F. & Mitchell, E. P. (1996). Glycerol concentrations required for cryoprotection of 50 typical protein crystallization solutions. J. Appl. Cryst. 29, 584–587.Google Scholar
First citation Garman, E. F. & Schneider, T. R. (1997). Macromolecular cryocrystallography. J. Appl. Cryst. 30, 211–237.Google Scholar
First citation Gonzalez, A. & Nave, C. (1994). Radiation damage in protein crystals at low temperature. Acta Cryst. D50, 874–877.Google Scholar
First citation Haas, D. J. (1968). X-ray studies on lysozyme crystals at −50 °C. Acta Cryst. B24, 604.Google Scholar
First citation Haas, D. J. & Rossmann, M. G. (1970). Crystallographic studies on lactate dehydrogenase at −75 °C. Acta Cryst. B26, 998–1004.Google Scholar
First citation Henderson, R. (1990). Cryoprotection of protein crystals against radiation damage in electron and X-ray diffraction. Proc. R. Soc. London Ser. B, 241, 6–8.Google Scholar
First citation Hope, H. (1988). Cryocrystallography of biological macromolecules: a generally applicable method. Acta Cryst. B44, 22–26.Google Scholar
First citation Hope, H. (1990). Crystallography of biological macromolecules at ultra-low temperature. Annu. Rev. Biophys. Biophys. Chem. 19, 107–126.Google Scholar
First citation Hope, H., Frolow, F., von Böhlen, K., Makowski, I., Kratky, C., Halfon, Y., Danz, H., Webster, P., Bartels, K. S., Wittmann, H. G. & Yonath, A. (1989). Cryocrystallography of ribosomal particles. Acta Cryst. B45, 190–199.Google Scholar
First citation Litt, A., Arnez, J. G., Klaholz, B. P., Mitschler, A. & Moras, D. (1998). A eucentric goniometer head sliding on an extended removable arc modified for use in cryocrystallography. J. Appl. Cryst. 31, 638–640.Google Scholar
First citation Low, B. W., Chen, C. C. H., Berger, J. E., Singman, L. & Pletcher, J. F. (1966). Studies of insulin crystals at low temperatures: effects on mosaic character and radiation sensitivity. Proc. Natl Acad. Sci. USA, 56, 1746–1750.Google Scholar
First citation Mancia, F., Oubridge, C., Hellon, C., Woollard, T., Groves, J. & Nagai, K. (1995). A novel device for the recovery of frozen crystals. J. Appl. Cryst. 28, 224–225.Google Scholar
First citation Parkin, S. & Hope, H. (1998). Macromolecular cryocrystallography: cooling, mounting, storage and transportation of crystals. J. Appl. Cryst. 31, 945–953.Google Scholar
First citation Ray, W. J. Jr, Bolin, J. T., Puvathingal, J. M., Minor, W., Liu, U. & Muchmore, S. W. (1991). Removal of salt from a salt-induced protein crystal without cross-linking. Preliminary examination of desalted crystals of phosphoglucomutase by X-ray crystallography at low temperature. Biochemistry, 30, 6866–6875.Google Scholar
First citation Rodgers, D. W. (1994). Cryocrystallography. Structure, 2, 1135–1140.Google Scholar
First citation Rodgers, D. W. (1996). Cryocrystallography of macromolecules. Synchrotron Radiat. News, 9, 4–11.Google Scholar
First citation Rodgers, D. W. (1997). Practical cryocrystallography. Methods Enzymol. 276, 183–203.Google Scholar
First citation Rudman, R. (1976). Low-temperature X-ray diffraction. New York: Plenum Press.Google Scholar
First citation Singh, T. P., Bode, W. & Huber, R. (1980). Low-temperature protein crystallography. Effect on flexibility, temperature factor, mosaic spread, extension and diffuse scattering in two examples: bovine trypsinogen and Fc fragment. Acta Cryst. B36, 621–627.Google Scholar
First citation Soltis, S. M., Stowell, M. H. B., Wiener, M. C., Phillips, G. N. Jr & Rees, D. C. (1997). Successful flash-cooling of xenon-derivatized myoglobin crystals. J. Appl. Cryst. 30, 190–194.Google Scholar
First citation Teng, T.-Y. (1990). Mounting of crystals for macromolecular crystallography in a free-standing thin film. J. Appl. Cryst. 23, 387–391.Google Scholar
First citation Teng, T.-Y. & Moffat, K. (1998). Cooling rates during flash cooling. J. Appl. Cryst. 31, 252–257.Google Scholar
First citation Walker, L. J., Moreno, P. O. & Hope, H. (1998). Cryocrystallography: effect of cooling medium on sample cooling rate. J. Appl. Cryst. 31, 954–956.Google Scholar
First citation Watenpaugh, K. D. (1991). Macromolecular crystallography at cryogenic temperatures. Curr. Opin. Struct. Biol. 1, 1012–1015.Google Scholar
First citation Wierenga, R. K., Zeelen, J. Ph. & Nobel, M. E. M. (1992). Crystal transfer experiments carried out with crystals of trypanosomal triosephosphate isomerase (TIM). J. Cryst. Growth, 122, 231–234.Google Scholar