International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 11.4, p. 230   | 1 | 2 |

Section 11.4.5.4. Correlation between parameters

Z. Otwinowskia* and W. Minorb

a UT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA, and bDepartment of Molecular Physiology and Biological Physics, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA
Correspondence e-mail:  zbyszek@mix.swmed.edu

11.4.5.4. Correlation between parameters

| top | pdf |

Occasionally, the refinement can be unstable due to high correlation between some parameters. High correlation results in the errors in one parameter compensating for the errors in other parameters. In the case where compensation is 100%, the parameter would be undefined, but the error compensation by other parameters would make the predicted pattern correct. In such cases, eigenvalue filtering [related to singular value decomposition, described by Press et al. (1989[link]) in Numerical Recipes] is employed to remove the most correlated components from the refinement to make it more stable. Eigenvalue filtering works reliably when starting parameters are close to the correct values, but may fail to correct large errors in the input parameters if the correlation is close to, but not exactly, 100%. Once the whole data set is integrated, global refinement [also called post refinement: Rossmann et al. (1979[link]); Winkler et al. (1979[link]); Evans (1987[link]); Greenhough (1987[link]); Evans (1993[link]); Kabsch (1993[link])] can refine crystal parameters (unit cell and orientation) more precisely and without correlation with detector parameters. The unit cell used in structure-determination calculations should come from the global refinement (in SCALEPACK) and not from DENZO refinement.

References

First citation Evans, P. (1993). Data reduction: data collection and processing. In Proceedings of the CCP4 study weekend. Data collection and processing, 29–30 January, edited by L. Sawyer, N. Isaac & S. Bailey, pp. 114–123. Warrington: Daresbury Laboratory.Google Scholar
First citation Evans, P. R. (1987). Postrefinement of oscillation camera data. In Proceedings of the Daresbury study weekend at Daresbury Laboratory, 23–24 January, edited by J. R. Helliwell, P. A. Machin and M. Z. Papiz, pp. 58–66. Warrington: Daresbury Laboratory.Google Scholar
First citation Greenhough, A. G. W. (1987). Partials and partiality. In Proceedings of the Daresbury study weekend at Daresbury Laboratory, 23–24 January, edited by J. R. Helliwell, P. A. Machin and M. Z. Papiz, pp. 51–57. Warrington: Daresbury Laboratory.Google Scholar
First citation Kabsch, W. (1993). Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800.Google Scholar
First citation Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1989). Numerical recipes – the art of scientific computing. Cambridge University Press.Google Scholar
First citation Rossmann, M. G., Leslie, A. G. W., Abdel-Meguid, S. S. & Tsukihara, T. (1979). Processing and post-refinement of oscillation camera data. J. Appl. Cryst. 12, 570–581.Google Scholar
First citation Winkler, F. K., Schutt, C. E. & Harrison, S. C. (1979). The oscillation method for crystals with very large unit cells. Acta Cryst. A35, 901–911.Google Scholar








































to end of page
to top of page