International
Tables for Crystallography Volume F Crystallography of biological macromolecules Edited by M. G. Rossmann and E. Arnold © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. F. ch. 11.4, p. 230
Section 11.4.5.4. Correlation between parameters
a
UT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA, and bDepartment of Molecular Physiology and Biological Physics, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA |
Occasionally, the refinement can be unstable due to high correlation between some parameters. High correlation results in the errors in one parameter compensating for the errors in other parameters. In the case where compensation is 100%, the parameter would be undefined, but the error compensation by other parameters would make the predicted pattern correct. In such cases, eigenvalue filtering [related to singular value decomposition, described by Press et al. (1989) in Numerical Recipes] is employed to remove the most correlated components from the refinement to make it more stable. Eigenvalue filtering works reliably when starting parameters are close to the correct values, but may fail to correct large errors in the input parameters if the correlation is close to, but not exactly, 100%. Once the whole data set is integrated, global refinement [also called post refinement: Rossmann et al. (1979
); Winkler et al. (1979
); Evans (1987
); Greenhough (1987
); Evans (1993
); Kabsch (1993
)] can refine crystal parameters (unit cell and orientation) more precisely and without correlation with detector parameters. The unit cell used in structure-determination calculations should come from the global refinement (in SCALEPACK) and not from DENZO refinement.
References






