International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 13.4, pp. 279-292   | 1 | 2 |
https://doi.org/10.1107/97809553602060000684

Chapter 13.4. Noncrystallographic symmetry averaging of electron density for molecular-replacement phase refinement and extension

M. G. Rossmanna* and E. Arnoldb

aDepartment of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA, and  bBiomolecular Crystallography Laboratory, CABM & Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854-5638, USA
Correspondence e-mail:  mgr@indiana.bio.purdue.edu

References

First citation Abad-Zapatero, C., Abdel-Meguid, S. S., Johnson, J. E., Leslie, A. G. W., Rayment, I., Rossmann, M. G., Suck, D. & Tsukihara, T. (1980). Structure of southern bean mosaic virus at 2.8 Å resolution. Nature (London), 286, 33–39.Google Scholar
First citation Argos, P., Ford, G. C. & Rossmann, M. G. (1975). An application of the molecular replacement technique in direct space to a known protein structure. Acta Cryst. A31, 499–506.Google Scholar
First citation Argos, P. & Rossmann, M. G. (1980). Molecular replacement method. In Theory and practice of direct methods in crystallography, edited by M. F. C. Ladd & R. A. Palmer, pp. 361–417. New York: Plenum.Google Scholar
First citation Arnold, E. & Rossmann, M. G. (1986). Effect of errors, redundancy, and solvent content in the molecular replacement procedure for the structure determination of biological macromolecules. Proc. Natl Acad. Sci. USA, 83, 5489–5493.Google Scholar
First citation Arnold, E. & Rossmann, M. G. (1988). The use of molecular-replacement phases for the refinement of the human rhinovirus 14 structure. Acta Cryst. A44, 270–282.Google Scholar
First citation Arnold, E., Vriend, G., Luo, M., Griffith, J. P., Kamer, G., Erickson, J. W., Johnson, J. E. & Rossmann, M. G. (1987). The structure determination of a common cold virus, human rhinovirus 14. Acta Cryst. A43, 346–361.Google Scholar
First citation Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L. & Wiley, D. C. (1987). Structure of the human class I histocompatibility antigen, HLA-A2. Nature (London), 329, 506–512.Google Scholar
First citation Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R. & Klug, A. (1978). Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits. Nature (London), 276, 362–368.Google Scholar
First citation Bolin, J. T., Smith, J. L. & Muchmore, S. W. (1993). Considerations in phase refinement and extension: experiments with a rapid and automatic procedure. American Crystallographic Association Annual Meeting, May 23–28, Albuquerque, New Mexico, Vol. 21, p. 51.Google Scholar
First citation Bragg, L. & Perutz, M. F. (1952). The structure of haemoglobin. Proc. R. Soc. London Ser. A, 213, 425–435.Google Scholar
First citation Bricogne, G. (1974). Geometric sources of redundancy in intensity data and their use for phase determination. Acta Cryst. A30, 395–405.Google Scholar
First citation Bricogne, G. (1976). Methods and programs for direct-space exploitation of geometric redundancies. Acta Cryst. A32, 832–847.Google Scholar
First citation Buehner, M., Ford, G. C., Moras, D., Olsen, K. W. & Rossmann, M. G. (1974). Structure determination of crystalline lobster D-glyceraldehyde-3-phosphate dehydrogenase. J. Mol. Biol. 82, 563–585.Google Scholar
First citation Champness, J. N., Bloomer, A. C., Bricogne, G., Butler, P. J. G. & Klug, A. (1976). The structure of the protein disk of tobacco mosaic virus at 5 Å resolution. Nature (London), 259, 20–24.Google Scholar
First citation Chapman, M. S., Tsao, J. & Rossmann, M. G. (1992). Ab initio phase determination for spherical viruses: parameter determination for spherical-shell models. Acta Cryst. A48, 301–312.Google Scholar
First citation Cornea-Hasegan, M. A., Zhang, Z., Lynch, R. E., Marinescu, D. C., Hadfield, A., Muckelbauer, J. K., Munshi, S., Tong, L. & Rossmann, M. G. (1995). Phase refinement and extension by means of non-crystallographic symmetry averaging using parallel computers. Acta Cryst. D51, 749–759.Google Scholar
First citation Cowtan, K. D. & Main, P. (1993). Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Cryst. D49, 148–157.Google Scholar
First citation Crowther, R. A. (1969). The use of non-crystallographic symmetry for phase determination. Acta Cryst. B25, 2571–2580.Google Scholar
First citation Das, K., Ding, J., Hsiou, Y., Clark, A. D. Jr, Moereels, H., Koymans, L., Andries, K., Pauwels, R., Janssen, P. A. J., Boyer, P. L., Clark, P., Smith, R. H. Jr, Kroeger Smith, M. B., Michejda, C. J., Hughes, S. H. & Arnold, E. (1996). Crystal structure of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. J. Mol. Biol. 264, 1085–1100.Google Scholar
First citation Ding, J., Das, K., Tantillo, C., Zhang, W., Clark, A. D. Jr, Jessen, S., Lu, X., Hsiou, Y., Jacobo-Molina, A., Andries, K., Pauwels, R., Moereels, H., Koymans, L., Janssen, P. A. J., Smith, R. H. Jr, Kroeger Koepke, M., Michejda, C. J., Hughes, S. H. & Arnold, E. (1995). Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor α-APA R 95845 at 2.8 Å resolution. Structure, 3, 365–379.Google Scholar
First citation Dodson, E. J., Gover, S. & Wolf, W. (1992). Editors. Proceedings of the CCP4 study weekend. Molecular replacement. Warrington: Daresbury Laboratory.Google Scholar
First citation Dokland, T., McKenna, R., Sherman, D. M., Bowman, B. R., Bean, W. F. & Rossmann, M. G. (1998). Structure determination of the φX174 closed procapsid. Acta Cryst. D54, 878–890.Google Scholar
First citation Esnouf, R., Ren, J., Ross, C., Jones, Y., Stammers, D. & Stuart, D. (1995). Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nature Struct. Biol. 2, 303–308.Google Scholar
First citation Fletterick, R. J. & Steitz, T. A. (1976). The combination of independent phase information obtained from separate protein structure determinations of yeast hexokinase. Acta Cryst. A32, 125–132.Google Scholar
First citation Furey, W. & Swaminathan, S. (1990). PHASES: a program package for the processing and analysis of diffraction data from macromolecules. Am. Crystallogr. Assoc. Meeting Abstracts, 18, PA33, p. 73.Google Scholar
First citation Furey, W. & Swaminathan, S. (1997). PHASES-95: a program package for the processing and analysis of diffraction data from macromolecules. Methods Enzymol. 277, 590–620.Google Scholar
First citation Gaykema, W. P. J., Hol, W. G. J., Vereijken, J. M., Soeter, N. M., Bak, H. J. & Beintema, J. J. (1984). 3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin. Nature (London), 309, 23–29.Google Scholar
First citation Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. (1978). Tomato bushy stunt virus at 2.9 Å resolution. Nature (London), 276, 368–373.Google Scholar
First citation Hogle, J. M., Chow, M. & Filman, D. J. (1985). Three-dimensional structure of poliovirus at 2.9 Å resolution. Science, 229, 1358–1365.Google Scholar
First citation Johnson, J. E. (1978). Appendix II. Averaging of electron density maps. Acta Cryst. B34, 576–577.Google Scholar
First citation Johnson, J. E., Akimoto, T., Suck, D., Rayment, I. & Rossmann, M. G. (1976). The structure of southern bean mosaic virus at 22.5 Å resolution. Virology, 75, 394–400.Google Scholar
First citation Johnson, J. E., Argos, P. & Rossmann, M. G. (1975). Rotation function studies of southern bean mosaic virus at 22 Å resolution. Acta Cryst. B31, 2577–2583.Google Scholar
First citation Jones, T. A. (1992). a, yaap, asap, @#*? A set of averaging programs. In Proceedings of the CCP4 study weekend. Molecular replacement, edited by E. Dodson, S. Gover & W. Wolf, pp. 91–105. Warrington: Daresbury Laboratory.Google Scholar
First citation Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119.Google Scholar
First citation Kleywegt, G. J. & Jones, T. A. (1994). Halloween, masks and bones. In From first map to final model, edited by S. Bailey, R. Hubbard & D. Waller, pp. 59–66. Warrington: Daresbury Laboratory.Google Scholar
First citation Kleywegt, G. J. & Jones, T. A. (1996). xdlMAPMAN and xdlDATAMAN – programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Cryst. D52, 826–828.Google Scholar
First citation Lin, Z., Konno, M., Abad-Zapatero, C., Wierenga, R., Murthy, M. R. N., Ray, W. J. Jr & Rossmann, M. G. (1986). The structure of rabbit muscle phosphoglucomutase at intermediate resolution. J. Biol. Chem. 261, 264–274.Google Scholar
First citation Luo, M., Vriend, G., Kamer, G. & Rossmann, M. G. (1989). Structure determination of Mengo virus. Acta Cryst. B45, 85–92.Google Scholar
First citation McKenna, R., Xia, D., Willingmann, P., Ilag, L. L., Krishnaswamy, S., Rossmann, M. G., Olson, N. H., Baker, T. S. & Incardona, N. L. (1992). Atomic structure of single-stranded DNA bacteriophage φX174 and its functional implications. Nature (London), 355, 137–143.Google Scholar
First citation McKenna, R., Xia, D., Willingmann, P., Ilag, L. L. & Rossmann, M. G. (1992). Structure determination of the bacteriophage φX174. Acta Cryst. B48, 499–511.Google Scholar
First citation Main, P. (1967). Phase determination using non-crystallographic symmetry. Acta Cryst. 23, 50–54.Google Scholar
First citation Matthews, B. W., Sigler, P. B., Henderson, R. & Blow, D. M. (1967). Three-dimensional structure of tosyl-α-chymotrypsin. Nature (London), 214, 652–656.Google Scholar
First citation Muckelbauer, J. K., Kremer, M., Minor, I., Tong, L., Zlotnick, A., Johnson, J. E. & Rossmann, M. G. (1995). Structure determination of coxsackievirus B3 to 3.5 Å resolution. Acta Cryst. D51, 871–887.Google Scholar
First citation Muirhead, H., Cox, J. M., Mazzarella, L. & Perutz, M. F. (1967). Structure and function of haemoglobin. III. A three-dimensional Fourier synthesis of human deoxyhaemoglobin at 5.5 Å resolution. J. Mol. Biol. 28, 117–156.Google Scholar
First citation Nordman, C. E. (1980). Procedures for detection and idealization of non-crystallographic symmetry with application to phase refinement of the satellite tobacco necrosis virus structure. Acta Cryst. A36, 747–754.Google Scholar
First citation Perutz, M. F. (1946). Trans. Faraday Soc. 42B, 187.Google Scholar
First citation Rayment, I. (1983). Molecular replacement method at low resolution: optimum strategy and intrinsic limitations as determined by calculations on icosahedral virus models. Acta Cryst. A39, 102–116.Google Scholar
First citation Ren, J., Esnouf, R., Garman, E., Somers, D., Ross, C., Kirby, I., Keeling, J., Darby, G., Jones, Y., Stuart, D. & Stammers, D. (1995). High resolution structures of HIV-1 RT from four RT-inhibitor complexes. Nature Struct. Biol. 2, 293–302.Google Scholar
First citation Rossmann, M. G. (1972). Editor. The molecular replacement method. New York: Gordon & Breach.Google Scholar
First citation Rossmann, M. G. (1990). The molecular replacement method. Acta Cryst. A46, 73–82.Google Scholar
First citation Rossmann, M. G. & Arnold, E. (2001). Patterson and molecular-replacement techniques. In International tables for crystallography, Vol. B. Reciprocal space, edited by U. Shmueli, ch. 2.3. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H. J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B. & Vriend, G. (1985). Structure of a human common cold virus and functional relationship to other picornaviruses. Nature (London), 317, 145–153.Google Scholar
First citation Rossmann, M. G. & Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit. Acta Cryst. 15, 24–31.Google Scholar
First citation Rossmann, M. G. & Blow, D. M. (1963). Determination of phases by the conditions of non-crystallographic symmetry. Acta Cryst. 16, 39–45.Google Scholar
First citation Rossmann, M. G., Blow, D. M., Harding, M. M. & Coller, E. (1964). The relative positions of independent molecules within the same asymmetric unit. Acta Cryst. 17, 338–342.Google Scholar
First citation Rossmann, M. G., McKenna, R., Tong, L., Xia, D., Dai, J.-B., Wu, H., Choi, H.-K. & Lynch, R. E. (1992). Molecular replacement real-space averaging. J. Appl. Cryst. 25, 166–180.Google Scholar
First citation Schuller, D. J. (1996). MAGICSQUASH: more versatile non-crystallographic averaging with multiple constraints. Acta Cryst. D52, 425–434.Google Scholar
First citation Sim, G. A. (1959). The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy-atom method for non-centrosymmetrical structures. Acta Cryst. 12, 813–815.Google Scholar
First citation Tong, L., Qian, C., Davidson, W., Massariol, M.-J., Bonneau, P. R., Cordingley, M. G. & Lagacé, L. (1997). Experiences from the structure determination of human cytomegalovirus protease. Acta Cryst. D53, 682–690.Google Scholar
First citation Tong, L. & Rossmann, M. G. (1995). Reciprocal-space molecular-replacement averaging. Acta Cryst. D51, 347–353.Google Scholar
First citation Tsao, J., Chapman, M. S. & Rossmann, M. G. (1992). Ab initio phase determination for viruses with high symmetry: a feasibility study. Acta Cryst. A48, 293–301.Google Scholar
First citation Tsao, J., Chapman, M. S., Wu, H., Agbandje, M., Keller, W. & Rossmann, M. G. (1992). Structure determination of monoclinic canine parvovirus. Acta Cryst. B48, 75–88.Google Scholar
First citation Valegård, K., Liljas, L., Fridborg, K. & Unge, T. (1990). The three-dimensional structure of the bacterial virus MS2. Nature (London), 345, 36–41.Google Scholar
First citation Varghese, J. N., Laver, W. G. & Colman, P. M. (1983). Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature (London), 303, 35–40.Google Scholar
First citation Vellieux, F. M. D. A. P., Hunt, J. F., Roy, S. & Read, R. J. (1995). DEMON/ANGEL: a suite of programs to carry out density modification. J. Appl. Cryst. 28, 347–351.Google Scholar
First citation Wang, J., Yan, Y., Garrett, T. P. J., Liu, J., Rodgers, D. W., Garlick, R. L., Tarr, G. E., Husain, Y., Reinherz, E. L. & Harrison, S. C. (1990). Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature (London), 348, 411–418.Google Scholar
First citation Wilson, I. A., Skehel, J. J. & Wiley, D. C. (1981). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature (London), 289, 366–373.Google Scholar
First citation Zhang, K. Y. J. (1993). SQUASH – combining constraints for macromolecular phase refinement and extension. Acta Cryst. D49, 213–222.Google Scholar