International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 15.1, pp. 311-324   | 1 | 2 |
https://doi.org/10.1107/97809553602060000687

Chapter 15.1. Phase improvement by iterative density modification

K. Y. J. Zhang,a K. D. Cowtanb* and P. Mainc

a Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Seattle, WA 90109, USA,bDepartment of Chemistry, University of York, York YO1 5DD, England, and cDepartment of Physics, University of York, York YO1 5DD, England
Correspondence e-mail:  cowtan+email@ysbl.york.ac.uk

References

First citation Abrahams, J. P. (1997). Bias reduction in phase refinement by modified interference functions: introducing the γ correction. Acta Cryst. D53, 371–376.Google Scholar
First citation Abrahams, J. P. & Leslie, A. G. W. (1996). Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Cryst. D52, 30–42.Google Scholar
First citation Agarwal, R. C. & Isaacs, N. W. (1977). Method for obtaining a high resolution protein map starting from a low resolution map. Proc. Natl Acad. Sci. USA, 74(7), 2835–2839.Google Scholar
First citation Baker, D., Bystroff, C., Fletterick, R. J. & Agard, D. A. (1993). PRISM: topologically constrained phase refinement for macromolecular crystallography. Acta Cryst. D49, 429–439.Google Scholar
First citation Baker, D., Krukowski, A. E. & Agard, D. A. (1993). Uniqueness and the ab initio phase problem in macromolecular crystallography. Acta Cryst. D49, 186–192.Google Scholar
First citation Bhat, T. N. & Blow, D. M. (1982). A density-modification method for the improvement of poorly resolved protein electron-density maps. Acta Cryst. A38, 21–29.Google Scholar
First citation Blow, D. M. & Rossmann, M. G. (1961). The single isomorphous replacement method. Acta Cryst. 14, 1195–1202.Google Scholar
First citation Bricogne, G. (1974). Geometric sources of redundancy in intensity data and their use for phase determination. Acta Cryst. A30, 395–405.Google Scholar
First citation Bricogne, G. (1976). Methods and programs for direct-space exploitation of geometric redundancies. Acta Cryst. A32, 832–847.Google Scholar
First citation Brünger, A. T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature (London), 355, 472–475.Google Scholar
First citation Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics. Science, 235, 458–460.Google Scholar
First citation Bystroff, C., Baker, D., Fletterick, R. J. & Agard, D. A. (1993). PRISM: application to the solution of two protein structures. Acta Cryst. D49, 440–448.Google Scholar
First citation Chapman, M. S., Tsao, J. & Rossmann, M. G. (1992). Ab initio phase determination for spherical viruses: parameter determination for spherical-shell models. Acta Cryst. A48, 301–312.Google Scholar
First citation Cowtan, K. D. (1999). Error estimation and bias correction in phase-improvement calculations. Acta Cryst. D55, 1555–1567.Google Scholar
First citation Cowtan, K. D. & Main, P. (1993). Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Cryst. D49, 148–157.Google Scholar
First citation Cowtan, K. D. & Main, P. (1996). Phase combination and cross validation in iterated density-modification calculations. Acta Cryst. D52, 43–48.Google Scholar
First citation Cowtan, K. D. & Main, P. (1998). Miscellaneous algorithms for density modification. Acta Cryst. D54, 487–493.Google Scholar
First citation Cowtan, K. D. & Zhang, K. Y. J. (1999). Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270.Google Scholar
First citation Crowther, R. A. & Blow, D. M. (1967). A method of positioning a known molecule in an unknown crystal structure. Acta Cryst. 23, 544–548.Google Scholar
First citation Greer, J. (1985). Computer skeletonization and automatic electron-density map analysis. In Diffraction methods for biological macromolecules, edited by H. W. Wyckoff, C. H. W. Hirs & S. N. Timasheff, Vol. 115, pp. 206–224. Orlando: Academic Press.Google Scholar
First citation Harrison, R. W. (1988). Histogram specification as a method of density modification. J. Appl. Cryst. 21, 949–952.Google Scholar
First citation Hauptman, H. (1986). The direct methods of X-ray crystallography. Science, 233, 178–183.Google Scholar
First citation Hendrickson, W. A., Klippenstein, G. L. & Ward, K. B. (1975). Tertiary structure of myohemerythrin at low resolution. Proc. Natl Acad. Sci. USA, 72(6), 2160–2164.Google Scholar
First citation Hendrickson, W. A. & Lattman, E. E. (1970). Representation of phase probability distributions for simplified combination of independent phase information. Acta Cryst. B26, 136–143.Google Scholar
First citation Hoppe, W. & Gassmann, J. (1968). Phase correction, a new method to solve partially known structures. Acta Cryst. B24, 97–107.Google Scholar
First citation Karle, J. (1986). Recovering phase information from intensity data. Science, 232, 837–843.Google Scholar
First citation Lamzin, V. S. & Wilson, K. S. (1997). Automated refinement for protein crystallography. Methods Enzymol. 277, 269–305.Google Scholar
First citation Leslie, A. G. W. (1987). A reciprocal-space method for calculating a molecular envelope using the algorithm of B. C. Wang. Acta Cryst. A43, 134–136.Google Scholar
First citation Lunin, V. Yu. (1988). Use of the information on electron density distribution in macromolecules. Acta Cryst. A44, 144–150.Google Scholar
First citation Lunin, V. Yu. & Skovoroda, T. P. (1991). Frequency-restrained structure-factor refinement. I. Histogram simulation. Acta Cryst. A47, 45–52.Google Scholar
First citation Main, P. (1979). A theoretical comparison of the β, γ′ and 2Fo − Fc syntheses. Acta Cryst. A35, 779–785.Google Scholar
First citation Main, P. (1990a). A formula for electron density histograms for equal-atom structures. Acta Cryst. A46, 507–509.Google Scholar
First citation Main, P. (1990b). The use of Sayre's equation with constraints for the direct determination of phases. Acta Cryst. A46, 372–377.Google Scholar
First citation Main, P. & Rossmann, M. G. (1966). Relationships among structure factors due to identical molecules in different crystallographic environments. Acta Cryst. 21, 67–72.Google Scholar
First citation Matthews, B. W. (1968). Solvent content of protein crystals. J. Mol. Biol. 33, 491–497.Google Scholar
First citation Miller, R., DeTitta, G. T., Jones, R., Langs, D. A., Weeks, C. M. & Hauptman, H. A. (1993). On the application of the minimal principle to solve unknown structures. Science, 259, 1430–1433.Google Scholar
First citation Navaza, J. (1994). AMoRe: an automated package for molecular replacement. Acta Cryst. A50, 157–163.Google Scholar
First citation Perrakis, A., Sixma, T. K., Wilson, K. S. & Lamzin, V. S. (1997). wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Cryst. D53, 448–455.Google Scholar
First citation Podjarny, A. D. & Yonath, A. (1977). Use of matrix direct methods for low-resolution phase extension for tRNA. Acta Cryst. A33, 655–661.Google Scholar
First citation Read, R. J. (1986). Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A42, 140–149.Google Scholar
First citation Read, R. J. & Schierbeek, A. J. (1988). A phased translation function. J. Appl. Cryst. 21, 490–495.Google Scholar
First citation Reynolds, R. A., Remington, S. J., Weaver, L. H., Fisher, R. G., Anderson, W. F., Ammon, H. L. & Matthews, B. W. (1985). Structure of a serine protease from rat mast cells determined from twinned crystals by isomorphous and molecular replacement. Acta Cryst. B41, 139–147.Google Scholar
First citation Rossmann, M. G. & Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit. Acta Cryst. 15, 24–31.Google Scholar
First citation Rossmann, M. G., McKenna, R., Tong, L., Xia, D., Dai, J.-B., Wu, H., Choi, H.-K. & Lynch, R. E. (1992). Molecular replacement real-space averaging. J. Appl. Cryst. 25, 166–180.Google Scholar
First citation Sayre, D. (1952). The squaring method: a new method for phase determination. Acta Cryst. 5, 60–65.Google Scholar
First citation Sayre, D. (1972). On least-squares refinement of the phases of crystallographic structure factors. Acta Cryst. A28, 210–212.Google Scholar
First citation Sayre, D. (1974). Least-squares phase refinement. II. High-resolution phasing of a small protein. Acta Cryst. A30, 180–184.Google Scholar
First citation Schevitz, R. W., Podjarny, A. D., Zwick, M., Hughes, J. J. & Sigler, P. B. (1981). Improving and extending the phases of medium- and low-resolution macromolecular structure factors by density modification. Acta Cryst. A37, 669–677.Google Scholar
First citation Schuller, D. J. (1996). MAGICSQUASH: more versatile non-crystallographic averaging with multiple constraints. Acta Cryst. D52, 425–434.Google Scholar
First citation Sim, G. A. (1959). The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy-atom method for non-centrosymmetrical structures. Acta Cryst. 12, 813–815.Google Scholar
First citation Swanson, S. M. (1994). Core tracing: depicting connections between features in electron density. Acta Cryst. D50, 695–708.Google Scholar
First citation Tsao, J., Chapman, M. S. & Rossmann, M. G. (1992). Ab initio phase determination for viruses with high symmetry: a feasibility study. Acta Cryst. A48, 293–301.Google Scholar
First citation Vellieux, F. M. D. (1998). A comparison of two algorithms for electron-density map improvement by introduction of atomicity: skeletonization, and map sorting followed by refinement. Acta Cryst. D54, 81–85.Google Scholar
First citation Vellieux, F. M. D. A. P., Hunt, J. F., Roy, S. & Read, R. J. (1995). DEMON/ANGEL: a suite of programs to carry out density modification. J. Appl. Cryst. 28, 347–351.Google Scholar
First citation Wang, B. C. (1985). Resolution of phase ambiguity in macromolecular crystallography. In Diffraction methods for bio-logical macromolecules, edited by H. W. Wyckoff, C. H. W. Hirs & S. N. Timasheff, Vol. 115, pp. 90–113. Orlando: Academic Press. Google Scholar
First citation Weeks, C. M., DeTitta, G. T., Miller, R. & Hauptman, H. A. (1993). Applications of the minimal principle to peptide structures. Acta Cryst. D49, 179–181.Google Scholar
First citation Wigley, D. B., Roper, D. I. & Cooper, R. A. (1989). Preliminary crystallographic analysis of 5-carboxymethyl-2-hydroxymuconate isomerase from Escherichia coli. J. Mol. Biol. 210, 881–882.Google Scholar
First citation Wilson, A. J. C. (1949). The probability distribution of X-ray intensities. Acta Cryst. 2, 318–321.Google Scholar
First citation Wilson, C. & Agard, D. A. (1993). PRISM: automated crystallographic phase refinement by iterative skeletonization. Acta Cryst. A49, 97–104.Google Scholar
First citation Woolfson, M. M. (1987). Direct methods – from birth to maturity. Acta Cryst. A43, 593–612.Google Scholar
First citation Zhang, K. Y. J. (1993). SQUASH – combining constraints for macromolecular phase refinement and extension. Acta Cryst. D49, 213–222.Google Scholar
First citation Zhang, K. Y. J., Cowtan, K. D. & Main, P. (1997). Combining constraints for electron density modification. In Macromolecular crystallography, edited by C. W. Carter & R. M. Sweet, Vol. 277, pp. 53–64. New York: Academic Press.Google Scholar
First citation Zhang, K. Y. J. & Main, P. (1988). Histogram matching as a density modification technique for phase refinement and extension of protein molecules. In Improving protein phases, edited by S. Bailey, E. Dodson & S. Phillips. Report DL/SCI/R26, pp. 57–64. Warrington: Daresbury Laboratory.Google Scholar
First citation Zhang, K. Y. J. & Main, P. (1990a). Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Cryst. A46, 41–46.Google Scholar
First citation Zhang, K. Y. J. & Main, P. (1990b). The use of Sayre's equation with solvent flattening and histogram matching for phase extension and refinement of protein structures. Acta Cryst. A46, 377–381.Google Scholar