
abrupt increase in correct peaks occurs when Fourier refinement is
started.

Since the correlation coefficient is a relatively absolute figure of
merit (given atomic resolution, values greater than 65% almost
invariably correspond to correct solutions), it is usually clear when
SHELXD has solved a structure. The current version of SHELXD
includes an option for calculating it using the full data every 10 or
20 internal loop cycles, and jumping to the external loop if the value
is high enough. Recalculating it every cycle would be computa-
tionally less efficient overall.

16.1.8. Applying dual-space programs successfully

The solution of the (known) structure of triclinic lysozyme by
SHELXD and shortly afterwards by SnB (Deacon et al., 1998)
finally broke the 1000-atom barrier for direct methods (there happen
to be 1001 protein atoms in this structure!). Both programs have
also solved a large number of previously unsolved structures that
had defeated conventional direct methods; some examples are listed
in Table 16.1.8.1. The overall quality of solutions is generally very
good, especially if appropriate action is taken during the Fourier-

Table 16.1.8.1. Some large structures solved by the Shake-and-Bake method

Previously known test data sets are indicated by an asterisk (�). When two numbers are given in the resolution column, the second indicates the lowest resolution at
which truncated data have yielded a solution. The program codes are SnB (S) and SHELXD (D).

(a) Full structures (�300 atoms).

Compound Space group Nu (molecule) Nu � solvent Nu (heavy) Resolution (Å) Program Reference

Vancomycin P43212 202 258 8Cl 0.9–1.4 S [1]

312 6Cl 1.09 D [2]

Actinomycin X2 P1 273 305 ----- 0.90 D [3]

Actinomycin Z3 P212121 186 307 2Cl 0.96 D [4]

Actinomycin D P1 270 314 ----- 0.94 D [4]

Gramicidin A� P212121 272 317 ----- 0.86–1.1 S, D [5]

DMSO d6 peptide P1 320 326 ----- 1.20 S [6]

Er-1 pheromone C2 303 328 7S 1.00 S [7]

Ristocetin A P21 294 420 ----- 1.03 D [8]

Crambin� P21 327 423 6S 0.83–1.2 S, D [9], [10]

Hirustasin P43212 402 467 10S 1.2–1.55 D [11]

Cyclodextrin derivative P21 448 467 ----- 0.88 D [12]

Alpha-1 peptide P1 408 471 Cl 0.92 S [13]

Rubredoxin� P21 395 497 Fe, 6S 1.0–1.1 S, D [14]

Vancomycin P1 404 547 12Cl 0.97 S [15]

BPTI� P212121 453 561 7S 1.08 D [16]

Cyclodextrin derivative P21 504 562 28S 1.00 D [17]

Balhimycin� P21 408 598 8Cl 0.96 D [18]

Mg-complex� P1 576 608 8Mg 0.87 D [19]

Scorpion toxin II� P212121 508 624 8S 0.96–1.2 S [20]

Amylose-CA26 P1 624 771 ----- 1.10 D [21]

Mersacidin P32 750 826 24S 1.04 D [22]

Cv HiPIP H42Q� P212121 631 837 4Fe 0.93 D [23]

HEW lysozyme� P1 1001 1295 10S 0.85 S, D [24], [25]

rc-WT Cv HiPIP P212121 1264 1599 8Fe 1.20 D [23]

Cytochrome c3 P31 2024 2208 8Fe 1.20 D [26]

(b) Se substructures (� 25 Se) solved using peak-wavelength anomalous-difference data.

Protein Space group
Molecular
weight (kDa) Se located Se total Resolution (Å) Program Reference

SAM decarboxylase P21 77 20 26 2.25 S [27]

AIR synthetase P212121 147 28 28 3.0 S [28]

FTHFS R32 200 28 28 2.5 D [29]

AdoHcy hydrolase C222 95 30 30 2.8–5.0 S [30]

Epimerase P21 370 64 70 3.0 S [31]

References: [1] Loll et al. (1997); [2] Schäfer et al. (1996); [3] Schäfer (1998); [4] Schäfer, Sheldrick, Bahner & Lackner (1998); [5] Langs (1988); [6] Drouin
(1998); [7] Anderson et al. (1996); [8] Schäfer & Prange (1998); [9] Stec et al. (1995); [10] Weeks et al. (1995); [11] Usón et al. (1999); [12] Aree et al. (1999);
[13] Prive et al. (1999); [14] Dauter et al. (1992); [15] Loll et al. (1998); [16] Schneider (1998); [17] Reibenspiess (1998); [18] Schäfer, Sheldrick, Schneider &
Vértesy (1998); [19] Teichert (1998); [20] Smith et al. (1997); [21] Gessler et al. (1999); [22] Schneider et al. (2000); [23] Parisini et al. (1999); [24] Deacon et al.
(1998); [25] Walsh et al. (1998); [26] Frazão et al. (1999); [27] Ekstrom et al. (1999); [28] Li et al. (1999); [29] Radfar et al. (2000); [30] Turner et al. (1998); [31]
Deacon & Ealick (1999).
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refinement stage. Most of the time, the Shake-and-Bake method
works remarkably well, even for rather large structures. However,
in problematic situations, the user needs to be aware of options that
can increase the chance of success.

16.1.8.1. Utilizing Pattersons for better starts

When slightly heavier atoms such as sulfur are present, it is
possible to start the Shake-and-Bake recycling procedure from a set
of atomic positions that are consistent with the Patterson function.
For large structures, the vectors between such atoms will
correspond to Patterson densities around or even below the noise
level, so classical methods of locating the positions of these atoms
unambiguously from the Patterson are unlikely to succeed.
Nevertheless, the Patterson function can still be used to filter sets
of starting atoms. This filter is currently implemented as follows in
SHELXD. First, a sharpened Patterson function (Sheldrick et al.,
1993) is calculated, and the top 200 (for example) non-Harker peaks
further than a given minimum distance from the origin are selected,
in turn, as two-atom translation-search fragments, one such
fragment being employed per solution attempt. For each of a
large number of random translations, all unique Patterson vectors
involving the two atoms and their symmetry equivalents are found
and sorted in order of increasing Patterson density. The sum of the
smallest third of these values is used as a figure of merit (PMF).
Tests showed that although the globally highest PMF for a given
two-atom search fragment may not correspond to correct atomic
positions, nevertheless, by limiting the number of trials, some
correct solutions may still be found. After all the vectors have been
used as search fragments (e.g. after 200 attempts), the procedure is
repeated starting again with the first vector. The two atoms may be
used to generate further atoms using a full Patterson superposition
minimum function or a weighted difference synthesis (in the current
version of SHELXD, a combination of the two is used).

In the case of the small protein BPTI (Schneider, 1998), 15 300
attempts based on 100 different search vectors led to four final
solutions with mean phase error less than 18°, although none of the
globally highest PMF values for any of the search vectors
corresponded to correct solutions. Table 16.1.8.2 shows the effect
of using different two-atom search fragments for hirustasin, a
previously unsolved 55-amino-acid protein containing five disulfide
bridges first solved using SHELXD (Usón et al., 1999). It is not clear
why some search fragments perform so much better than others;
surprisingly, one of the more effective search vectors deviates
considerably (1.69 Å) from the nearest true S–S vector.

16.1.8.2. Avoiding false minima

The frequent imposition of real-space constraints appears to keep
dual-space methods from producing most of the false minima that
plague practitioners of conventional direct methods. Translated
molecules have not been observed (so far), and traditionally
problematic structures with polycyclic ring systems and long
aliphatic chains are readily solved (McCourt et al., 1996, 1997).
False minima of the type that occur primarily in space groups
lacking translational symmetry and are characterized by a single
large ‘uranium’ peak do occur frequently in P1 and occasionally in
other space groups. Triclinic hen egg-white lysozyme exhibits this
phenomenon regardless of whether parameter-shift or tangent-
formula phase refinement is employed. An example from another
space group (C222) is provided by the Se substructure data for
AdoHcy hydrolase. In this case, many trials converge to false
minima if the feature in the SnB program that eliminates peaks at
special positions is not utilized.

The problem with false minima is most serious if they have a
‘better’ value of the figure of merit being used for diagnostic
purposes than do the true solutions. Fortunately, this is not the case
with the uranium ‘solutions’, which can be distinguished on the
basis of the minimal function [equation (16.1.4.2)] or the correlation
coefficient [equation (16.1.6.1)]. However, it would be inefficient to
compute the latter in each dual-space cycle since it requires that
essentially all reflections be used. To be an effective discriminator,
the figure of merit must be computed using the phases calculated
from the point-atom model, not from the phases directly after
refinement. Phase refinement can and does produce sets of phases,
such as the uranium phases, which do not correspond to physical
reality. Hence, it should not be surprising that such phase sets might
appear ‘better’ than the true phases and could lead to an erroneous
choice for the best trial. Peak picking, followed by a structure-factor
calculation in which the peaks are sensibly weighted, converts the
phase set back to physically allowed values. If the value of the
minimal function computed from the refined or unconstrained
phases is denoted by Runc and the value of the minimal function
computed using the constrained phases resulting from the atomic
model is denoted by Rcon, then a function defined by

R ratio � �Rcon � Runc���Rcon � Runc� �16�1�8�1�
can be used to distinguish false minima from other nonsolutions as
well as the true solutions. Once a trial falls into a false minimum, it
never escapes. Therefore, the R ratio can be used, within SnB, as a
criterion for early termination of unproductive trials. Based on data
for several P1 structures, it appears that termination of trials with R
ratio values exceeding 0.2 will eliminate most false minima without
risking rejection of any potential solutions. In the case of triclinic
lysozyme, false minima can be recognized, on average, by cycle 25.
Since the default recommendation would be for 1000 cycles, a
substantial saving in CPU time is realized by using the R ratio early-
termination test. It should be noted that SHELXD optionally allows
early termination of trials if the second peak is less than a specified
fraction (e.g. 40%) of the height of the first. Generally, but not
always, the R-ratio and peak-ratio tests eliminate the same trials.

Recognizing false minima is, of course, only part of the battle. It
is also necessary to find a real solution, and essentially 100% of the
triclinic lysozyme trials were found to be false minima when the
standard parameter-shift conditions of two 90° shifts were used. In
fact, significant numbers of solutions occur only when single-shift
angles in the range 140–170° are used (Fig. 16.1.8.1), and there is a
surprisingly high success rate (percentage of trial structures that go
to solutions) over a narrow range of angles centred about 157.5°. It
is also not surprising that there is a correlated decrease in the
percentage of false minima in the range 140–150°. This suggests
that a fruitful strategy for structures that exhibit a large percentage

Table 16.1.8.2. Overall success rates for full structure solution
for hirustasin using different two-atom search vectors chosen

from the Patterson peak list

Resolution (Å) Two-atom search fragments
Solutions per
1000 attempts

1.2 Top 100 general Patterson peaks 86

1.2 Top 300 general Patterson peaks 38

1.2 One vector, error � 0�08 A
�

14

1.2 One vector, error � 0�38 A
�

41

1.2 One vector, error � 0�40 A
�

219

1.2 One vector, error � 1�69 A
�

51

1.4 Top 100 general Patterson peaks 10

1.5 Top 100 general Patterson peaks 4

1.5 One vector, error � 0�29 A
�

61
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of false minima would be the following. Run 100 or so trials at each
of several shift angles in the range 90–180°, find the smallest angle
which gives nearly zero false minima, and then use this angle as a
single shift for many trials. Balhimycin is an example of a large
non-P1 structure that also requires a parameter shift of around 154°
to obtain a solution using the minimal function.

16.1.8.3. Data resolution and completeness

The importance of the presence of several atoms heavier than
oxygen for increasing the chance of obtaining a solution by SnB at
resolutions less than 1.2 Å was noticed for truncated data from
vancomycin and the 289-atom structure of conotoxin EpI (Weeks &
Miller, 1999b). The results of SHELXD application to hirustasin are
consistent with this (Usón et al., 1999). The 55-amino-acid protein

hirustasin could be solved by SHELXD using either 1.2 Å low-
temperature data or 1.4 Å room-temperature data; however, as
shown in Fig. 16.1.8.2(a), the mean phase error (MPE) is
significantly better for the 1.2 Å data over the whole resolution
range. The MPE is determined primarily by the data-to-parameter
ratio, which is reflected in the smaller number of reliable triplet
invariants at lower resolution. Although small-molecule interpreta-
tion based on peak positions worked well for the 1.2 Å solution
(overall MPE � 18�), standard protein chain tracing was required
for the 1.4 Å solution (overall MPE � 26�). As is clear from the
corresponding electron-density map (Fig. 16.1.8.2b), the Shake-
and-Bake procedure produces easily interpreted protein density
even when bonded atoms are barely resolved from each other. The
hirustasin structure was also determined with SHELXD using
1.55 Å truncated data, and this endeavour currently holds the
record for the lowest-resolution successful application of Shake-
and-Bake.

The relative effects of accuracy, completeness and resolution on
Shake-and-Bake success rates using SnB for three large P1
structures were studied by computing error-free data using the
known atomic coordinates. The results of these studies, presented in
Table 16.1.8.3, show that experimental error contributed nothing of
consequence to the low success rates for vancomycin and lysozyme.
However, completing the vancomycin data up to the maximum
measured resolution of 0.97 Å resulted in a substantial increase in
success rate which was further improved to an astounding success
rate of 80% when the data were expanded to 0.85 Å.

On account of overload problems, the experimental vancomycin
data did not include any data at 10 Å resolution or lower. A total of
4000 reflections were phased in the dual-space loop in the process
of solving this structure with the experimental data. Some of these
data were then replaced with the largest error-free magnitudes
chosen from the missing reflections at several different resolution
limits. The results in Table 16.1.8.4 show a tenfold increase in
success rate when only 200 of the largest missing magnitudes were
supplied, and it made no difference whether these reflections had a
maximum resolution of 2.8 Å or were chosen randomly from the
whole 0.97 Å sphere. The moral of this story is that, when collecting
data for Shake-and-Bake, it pays to take a second pass using a
shorter exposure to fill-in the low-resolution data.

Fig. 16.1.8.1. Success rates for triclinic lysozyme are strongly influenced
by the size of the parameter-shift angle. Each point represents a
minimum of 256 trials.

Fig. 16.1.8.2. (a) Mean phase error as a function of resolution for the two independent ab initio SHELXD solutions of the previously unsolved protein
hirustasin. Either the 1.2 Å or the 1.4 Å native data set led to solution of the structure. (b) Part of the hirustasin molecule from the 1.4 Å room-
temperature data after one round of B-value refinement with fixed coordinates.
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16.1.8.4. Choosing a refinement strategy

Variations in the computational details of the dual-space loop can
make major differences in the efficacy of SnB and SHELXD.
Recently, several strategies were combined in SHELXD and applied
to a 148-atom P1 test structure (Karle et al., 1989) with the results
shown in Fig. 16.1.8.3. The CPU time requirements of parameter-
shift (PS) and tangent-formula expansion (TE) are similar, both
being slower than no phase refinement (NR). In real space, the
random-omit-map strategy (RO) was slightly faster than simple
peak picking (PP) because fewer atoms were used in the structure-
factor calculations. Both of these procedures were much faster than
iterative peaklist optimization (PO). The original SHELXD
algorithm (TE + PO) performs quite well in comparison with the
SnB algorithm (PS + PP) in terms of the percentage of correct
solutions, but less well when the efficiency is compared in terms of
CPU time per solution. Surprising, the two strategies involving
random omit maps (PS + RO and TE + RO), which had been
calculated to give reference curves, are much more effective than
the other algorithms, especially in terms of CPU efficiency. Indeed
these two runs appear to approach a 100% success rate as the
number of cycles becomes large. The combination of random omit
maps and Karle-type tangent expansion appears to be even more
effective (Fig. 16.1.8.4) for gramicidin A, a P212121 structure
(Langs, 1988). It should be noted that conventional direct methods
incorporating the tangent formula tend to perform better in P212121
than in P1, perhaps because there is less risk of a uranium-atom
pseudosolution.

Subsequent tests using SHELXD on several other structures have
shown that the use of random omit maps is much more effective
than picking the same final number of peaks from the top of the peak
list. However, it should be stressed that it is the combination TE +
RO that is particularly effective. A possible special case is when a
very small number of atoms is sought (e.g. Se atoms from MAD

data). Preliminary tests indicate that peaklist optimization (PO) is
competitive in such cases because the CPU time penalty associated
with it is much smaller than when many atoms are involved.

With hindsight, it is possible to understand why the random omit
maps provide such an efficient search algorithm. In macromole-
cular structure refinement, it is standard practice to omit parts of the
model that do not fit the current electron density well, to perform
some refinement or simulated annealing (Hodel et al., 1992) on the
rest of the model to reduce memory effects, and then to calculate a
new weighted electron-density map (omit map). If the original
features reappear in the new density, they were probably correct; in
other cases the omit map may enable a new and better

Table 16.1.8.3. Success rates for three P1 structures illustrate
the importance of using complete data to the highest possible

resolution

Vancomycin Alpha-1 Lysozyme

Atoms 547 471 �1200

Completeness (%) 80.2 85.6 68.3

Resolution (Å) 0.97 0.90 0.85

Parameter shift 112.5°, 1 90°, 2 90°, 2

Success rates (%)

Experimental 0.25 14 0

Error-free 0.2 19 0

Error-free complete 14 29 0.8

Error-free complete extended
to 0.85 Å

80 42 -----

Table 16.1.8.4. Improving success rates by ‘completing’ the
vancomycin data

Error-free reflections added Success rate (%)

0 0.25

100 (3.5 Å) 0.3

200 (2.8 Å) 2.1

200 (0.97 Å) 2.4

400 (1.3 Å) 8.2

800 (1.1 Å) 11.1

Fig. 16.1.8.3. (a) Success rates and (b) cost effectiveness for several dual-
space strategies as applied to a 148-atom P1 structure. The phase-
refinement strategies are: (PS) parameter-shift reduction of the minimal-
function value, (TE) Karle-type tangent expansion (holding the top 40%
highest Ec fixed) and (NR) no phase refinement but Sim (1959) weights
applied in the E map (these depend on Ec and so cannot be employed
after phase refinement). The real-space strategies are: (PP) simple peak
picking using 0�8Nu peaks, (PO) peaklist optimization (reducing Nu
peaks to 2Nu�3), and (RO) random omit maps (also reducing Nu peaks
to 2Nu�3). A total of about 10 000 trials of 400 internal loop cycles each
were used to construct this diagram.
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interpretation. Thus, random omit maps should not lead to the loss
of an essentially correct solution, but enable efficient searching in
other cases. It is also interesting to note that the results presented in
Figs. 16.1.8.3 and 16.1.8.4 show that it is possible, albeit much less
efficiently, to solve both structures using random omit maps without
the use of any phase relationships based on probability theory
(curves NR + RO).

16.1.8.5. Expansion to P1

The results shown in Table 16.1.8.4 and Fig. 16.1.8.3 indicate
that success rates in space group P1 can be anomalously high. This
suggests that it might be advantageous to expand all structures to P1
and then to locate the symmetry elements afterwards. However, this
is more computationally expensive than performing the whole
procedure in the true space group, and in practice such a strategy is
only competitive in low-symmetry space groups such as P21, C2 or
P�1 (Chang et al., 1997). Expansion to P1 also offers some
opportunities for starting from ‘slightly better than random’ phases.
One possibility, successfully demonstrated by Sheldrick & Gould
(1995), is to use a rotation search for a small fragment (e.g. a short
piece of �-helix) to generate many sets of starting phases; after
expansion to P1 the translational search usually required for
molecular replacement is not needed. Various Patterson super-
position minimum functions (Sheldrick & Gould, 1995; Pavelčı́k,
1994) can also provide an excellent start for phase determination for
data expanded to P1. Drendel et al. (1995) were successful in
solving small organic structures ab initio by a Fourier recycling
method using data expanded to P1 without the use of probability
theory.

16.1.8.6. Substructure applications

It has been known for some time that conventional direct
methods can be a valuable tool for locating the positions of heavy-
atom substructures using isomorphous (Wilson, 1978) and
anomalous (Mukherjee et al., 1989) difference structure factors.
Experience has shown that successful substructure applications are
highly dependent on the accuracy of the difference magnitudes. As
the technology for producing selenomethionine-substituted proteins
and collecting accurate multiple-wavelength (MAD) data has
improved (Hendrickson & Ogata, 1997; Smith, 1998), there has
been an increased need to locate many selenium sites. For larger
structures (e.g. more than about 30 Se atoms), automated Patterson

interpretation methods can be expected to run into difficulties since
the number of unique peaks to be analysed increases with the square
of the number of atoms. Experimentally measured difference data
are an approximation to the data for the hypothetical substructure,
and it is reasonable to expect that conventional direct methods
might run into difficulties sooner when applied to such data. Dual-
space direct methods provide a more robust foundation for handling
such data, which are often extremely noisy. Dual-space methods
also have the added advantage that the expected number of Se
atoms, Nu, which is usually known, can be exploited directly by
picking the top Nu peaks. Successful applications require great care
in data processing, especially if the FA values resulting from a MAD
experiment are to be used.

All successful applications of SnB to previously unknown SeMet
data sets, as reported in Table 16.1.8.1, actually involved the use of
peak-wavelength anomalous difference data �	E�	�. The amount of
data available for substructure problems is much larger than for full-
structure problems with a comparable number of atoms to be
located. Consequently, the user can afford to be stringent in
eliminating data with uncertain measurements. Guidelines for
rejecting uncertain data have been suggested (Smith et al., 1998).
Consideration should be limited to those data pairs �	E1	, 	E2	� [i.e.,
isomorphous pairs �	Enat	, 	Eder	� and anomalous pairs
�	E�H	, 	E�H	�] for which

min 	E1	���	E1	�, 	E2	���	E2	�
 � � xmin �16�1�8�2�
and

E1	 � 	E2

�2�	E1	� � �2�	E2	��1�2

� ymin, �16�1�8�3�

where typically xmin � 3 and ymin � 1. The final choice of
maximum resolution to be used should be based on inspection of
the spherical shell averages �	E�	2�s versus �s�. The purpose of this
precaution is to avoid spuriously large 	E�	 values for high-
resolution data pairs measured with large uncertainties due to
imperfect isomorphism or general fall-off of scattering intensity
with increasing scattering angle. Only those 	E�	 for which

	E�	���	E�	� � zmin �16�1�8�4�
(typically zmin � 3) should be deemed sufficiently reliable for
subsequent phasing. The probability of very large difference 	E	’s
(e.g. � 5) is remote, and data sets that appear to have many such
measurements should be examined critically for measurement
errors. If a few such data remain even after the adoption of rigorous
rejection criteria, it may be best to eliminate them individually. A
later paper (Blessing & Smith, 1999) elaborates further data-
selection criteria.

On the other hand, it is also important that the phase:invariant
ratio be maintained at 1:10 in order to ensure that the phases are
overdetermined. Since the largest 	E	’s for the substructure cell are
more widely separated than they are in a true small-molecule cell,
the relative number of possible triplets involving the largest
reciprocal-lattice vectors may turn out to be too small. Conse-
quently, a relatively small number of substructure phases (e.g.
10Nu) may not have a sufficient number (i.e., 100Nu) of invariants.
Since the number of triplets increases rapidly with the number of
reflections considered, the appropriate action in such cases is to
increase the number of reflections as suggested in Table 16.1.7.1.
This will typically produce the desired overdetermination.

It is rare for Se atoms to be closer to each other than 5 Å, and the
application of SnB to AdoHcy data truncated to 4 and 5 Å has been
successful. Success rates were less for lower-resolution data, but the
CPU time required per trial was also reduced, primarily because
much smaller Fourier grids were necessary. Consequently, there
was no net increase in the CPU time needed to find a solution.

Fig. 16.1.8.4. Success rates for the 317-atom P212121 structure of
gramicidin A.

343

16.1. AB INITIO PHASING



A special version of SHELXD is being developed that makes
extensive use of the Patterson function both in generating starting
atoms and in providing an independent figure of merit. It has
already successfully located the anomalous scatterers in a number
of structures using MAD FA data or simple anomalous differences.
A recent example was the unexpected location of 17 anomalous
scatterers (sulfur atoms and chloride ions) from the 1.5 Å-
wavelength anomalous differences of tetragonal HEW lysozyme
(Dauter et al., 1999).

16.1.9. Extending the power of direct methods

The Shake-and-Bake approach has increased, by an order of
magnitude, the size of structures solvable by direct methods. In
addition, a routine application of the SnB program to peak-
wavelength anomalous difference data has revealed 64 of the 70
Se sites in a selenomethionine-substituted protein (Deacon &
Ealick, 1999). Although there is no indication that maximum size
limitations have been reached, the fact that the reliability of
invariant estimates is known to decrease with increasing structure
size suggests that such limitations may exist; based on preliminary
tests, it is conjectured that the limit is a few thousand unique atoms
for conventional full-structure experiments. Thus, it is natural to
wonder what can be done in situations where direct methods are not
now routinely applicable. These cases include (1) macromolecules
that lack heavy-atom or anomalous-scattering sites with sufficient
phasing power for present techniques, (2) macromolecules for
which no derivatives are available or for which selenium
substitution is impossible, and (3) structures of any size which
fail to diffract at sufficiently high resolution. ‘Sufficiently high’
typically means about 1.2 Å in non-substructure situations.

The requirement for data to very high resolution is, of course,
troublesome for macromolecules. One approach to lowering
resolution requirements might be to replace the peak search by a
search for small common fragments (e.g. the five atoms of a peptide
unit or an aromatic residue). Furthermore, it should also be possible
to integrate the wARP procedure (Lamzin & Wilson, 1993; Perrakis
et al., 1997) into the real-space part of the Shake-and-Bake cycle.
The Patterson function (Pavelčı́k, 1994; Sheldrick & Gould, 1995)
and large Karle–Hauptman determinants (Vermin & de Graaff,
1978) might also improve the success rate in borderline cases by
providing better-than-random starting coordinates or phases.

However, it is not necessarily true that peak picking is the
primary limitation to lower-resolution applications. The lack of
enough sufficiently accurate triplet-invariant values appears to be a
more fundamental problem. Simulation experiments have shown
that the SnB program can solve the crambin structure even at 2.0 Å
if the invariants used are accurate enough (Weeks et al., 1998).
Therefore, the primary breakdown of Shake-and-Bake occurs in
reciprocal space and could likely be overcome if correct individual
invariant values were used instead of the rather crude estimates
provided by the Cochran (1955) distribution for the cosines of the
triplet invariants. Individual invariant estimates, �HK, can be
accommodated by a modified tangent formula,

tan�H �
�

K WHK sin��HK � �K � ��H�K��
K WHK cos��HK � �K � ��H�K� , �16�1�9�1�

or by a modified minimal function,

R��� � �1�2
�

H� K WHK�
�

H� K WHK 
cos��HK� � cos��HK�� �2

� sin��HK� � sin��HK�
 �2�, �16�1�9�2�
where WHK are appropriately chosen weights. Either of these
relationships can serve as the basis for a modified Shake-and-Bake
procedure.

One approach to providing better invariant values is to estimate
them individually from the known structure-factor magnitudes
(	E	’s). Several methods for doing this have been proposed over the
years for the small-molecule case (e.g. Hauptman et al., 1969;
Langs, 1993), and this approach has met with limited success. In the
macromolecular case, however, better options for estimating
invariant values are available whenever supplemental information
in the form of isomorphous-replacement or anomalous-dispersion
data is provided. In addition, the development of multiple-beam
diffraction raises the possibility of measuring invariant values
experimentally. The modified tangent and minimal-function
formulas provide the foundation for a unified treatment of all
such supplemental information.

16.1.9.1. Integration with isomorphous replacement

The integration of traditional direct methods with isomorphous
replacement was initiated by Hauptman (1982a), who studied the
conditional probability distribution of triplet invariants comprised
jointly of native and derivative phases assuming as known the six
magnitudes associated with reciprocal-lattice vectors H, K and
�H�K. It was shown that many triplets, whose true values were
near either 0 or 	, could be identified and reliably estimated. Later it
was shown that cosine estimates could be obtained anywhere in the
range �1 to +1 (Fortier et al., 1985). In a series of six recent papers,
Giacovazzo and collaborators utilized a combined direct-methods/
isomorphous-replacement approach, with limited success, to devise
procedures for the ab initio solution of the phase problem for
macromolecules (Giacovazzo, Siliqi & Ralph, 1994; Giacovazzo,
Siliqi & Spagna, 1994; Giacovazzo, Siliqi & Zanotti, 1995;
Giacovazzo & Platas, 1995; Giacovazzo, Siliqi & Platas, 1995;
Giacovazzo et al., 1996). Their methods depend only on diffraction
data for a pair of isomorphous structures and do not require any
prior structural knowledge. Hu & Liu (1997) have generalized the
earlier work to obtain the conditional distribution of the general
(n-phase) structure invariant when diffraction data are available for
any number (m) of isomorphous structures. Finally, it has been
shown that, provided the heavy-atom substructure is known,
Hauptman’s triplet distribution leads to unique values for the
triplets and the individual phases (Langs et al., 1995).

16.1.9.2. Integration with anomalous dispersion

In a manner analogous to the SIR case, Hauptman (1982b)
derived the conditional probability distribution for triplet invariants
given six magnitudes �	EH	, 	E�H	, 	EK	, 	E�K	, 	EH�K	, 	E�H�K	� in
the presence of anomalous dispersion. It was shown that unique
estimates, lying anywhere in the whole interval 0–2	, could be
obtained for the triplet values. This result was unanticipated since
all earlier work had led to the conclusion that a twofold ambiguity in
the value of an individual phase was intrinsic to the SAS approach.
Later, it was demonstrated how the probabilistic estimates led to
individual phases by means of a system of SAS tangent equations
(Hauptman, 1996). Although the initial application of this tangent-
based approach to the previously known macromomycin structure
(750 non-H protein atoms plus 150 solvent molecules) was
encouraging, it has not yet been applied to unknown macro-
molecules.

The conditional probability distributions of the quartet invar-
iants, in both the SIR and SAS cases, have been derived based on
corresponding difference structure factors rather than on the
individual structure factors themselves (Kyriakidis et al., 1996).
Fan and his collaborators (Fan et al., 1984; Fan & Gu, 1985; Fan et
al., 1990; Sha et al., 1995; Zheng et al., 1996) have also extensively
studied the use of direct methods in the SAS case. Applications to
the known small protein avian pancreatic polypeptide at 2 Å
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