Tables for
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 16.2, pp. 346-351   | 1 | 2 |

Chapter 16.2. The maximum-entropy method

G. Bricognea*

aLaboratory of Molecular Biology, Medical Research Council, Cambridge CB2 2QH, England
Correspondence e-mail:


Bertaut, E. F. (1955a). La méthode statistique en cristallographie. I. Acta Cryst. 8, 537–543.Google Scholar
Bertaut, E. F. (1955b). La méthode statistique en cristallographie. II. Quelques applications. Acta Cryst. 8, 544–548.Google Scholar
Bricogne, G. (1984). Maximum entropy and the foundations of direct methods. Acta Cryst. A40, 410–445.Google Scholar
Bricogne, G. (2001). Fourier transforms in crystallography: theory, algorithms and applications. In International tables for crystallography, Vol. B. Reciprocal space, edited by U. Shmueli, 2nd ed., ch. 1.3. Dordrecht: Kluwer Academic Publishers.Google Scholar
Hauptman, H. & Karle, J. (1953). The solution of the phase problem: I. The centrosymmetric crystal. ACA Monograph No. 3. Pittsburgh: Polycrystal Book Service.Google Scholar
Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev. 106, 620–630.Google Scholar
Jaynes, E. T. (1968). Prior probabilities. IEEE Trans. SSC, 4, 227–241.Google Scholar
Jaynes, E. T. (1983). Papers on probability, statistics and statistical physics. Dordrecht: Reidel. Google Scholar
Klug, A. (1958). Joint probability distribution of structure factors and the phase problem. Acta Cryst. 11, 515–543.Google Scholar
Shannon, C. E. & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.Google Scholar
Tsoucaris, G. (1970). A new method of phase determination. The `maximum determinant rule'. Acta Cryst. A26, 492–499.Google Scholar
Wiener, N. (1949). Extrapolation, interpolation and smoothing of stationary time series. Cambridge, MA: MIT Press.Google Scholar