International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 17.2, pp. 357-368   | 1 | 2 |
https://doi.org/10.1107/97809553602060000692

Chapter 17.2. Molecular graphics and animation

A. J. Olsona*

aThe Scripps Research Institute, La Jolla, CA 92037, USA
Correspondence e-mail: [email protected]

References

First citation Bailey, M., Schulten, K. & Johnson, J. (1998). The use of solid physical models for the study of macromolecular assembly. Curr. Opin. Struct. Biol. 8, 202–208.Google Scholar
First citation Bajaj, C. L., Pascucci, V. & Schikore, D. R. (1996). Fast isocontouring for improved interactivity. In Proceedings of the ACM SIGGRAPH/IEEE symposium on volume visualization, pp. 39–46. San Francisco: ACM Press.Google Scholar
First citation Barry, C. D. & McAlister, J. P. (1982). High performance molecular graphics, a hardware review. In Computational crystallography, edited by D. Sayre, pp. 274–255. Oxford: Clarendon Press.Google Scholar
First citation Branden, C.-I., Jornvall, H., Eklund, H. & Fureugren, B. (1975). Alcohol dehydrogenase. In The enzymes, edited by P. Boyer, pp. 104–186. New York: Academic Press.Google Scholar
First citation Brooks, J. P. Jr, Ouh-Young, M., Batter, J. J. & Kilpatrick, P. J. (1990). Project GROPE – haptic displays for scientific visualization. Comput. Graphics, 24, 177–186.Google Scholar
First citation Burns, M. (1954). Automated fabrication: improving productivity in manufacturing. New Jersey: Prentice Hall.Google Scholar
First citation Carson, M. (1991). RIBBONS 2.0. J. Appl. Cryst. 24, 958–961.Google Scholar
First citation Connolly, M. L. (1983). Solvent-accessible surfaces of proteins and nucleic acids. Science, 221, 709–713.Google Scholar
First citation Connolly, M. L. & Olson, A. J. (1985). GRANNY, a companion to GRAMPS for the real-time manipulation of macromolecular models. Comput. Chem. 9, 1–6.Google Scholar
First citation Diamond, R. (1982). BILDER: an interactive graphics program for biopolymers. In Computational crystallography, edited by D. Sayre, pp. 318–325. Oxford: Clarendon Press.Google Scholar
First citation Drebein, R., Carpenter, L. & Hanrahan, P. (1988). Volume rendering. Proc. ACM SIGGRAPH'88 (Atlanta, Georgia, 1–5 August 1988). In Comput. Graphics Proc. Annu. Conf. Ser. 1988 (1993), pp. 65–74. New York: ACM SIGGRAPH.Google Scholar
First citation Duncan, B. S. & Olson, A. J. (1993). Approximation and characterization of molecular surfaces. Biopolymers, 33, 219–229.Google Scholar
First citation Duncan, B. S. & Olson, A. J. (1995). Approximation and visualization of large-scale motion of protein surfaces. J. Mol. Graphics, 13, 250–257.Google Scholar
First citation Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R. (1988). The MIDAS display system. J. Mol. Graphics, 6, 13–27.Google Scholar
First citation Goodford, P. J. (1985). A computational procedure for determining energetically favorable binding sites on biologically important molecules. J. Med. Chem. 28, 849–857.Google Scholar
First citation Goodsell, D. S., Mian, I. S. & Olson, A. J. (1989). Rendering of volumetric data in molecular systems. J. Mol. Graphics, 7, 41–47.Google Scholar
First citation Goodsell, D. S. & Olson, A. J. (1992). Molecular illustration in black and white. J. Mol. Graphics, 10, 235–240.Google Scholar
First citation Gouraud, H. (1971). Continuous shading of curved surfaces. IEEE Trans. Comput. 20, 623–628.Google Scholar
First citation Gwilliam, M. & Max, N. (1989). Atoms with shadows – an area-based algorithm for cast shadows on space-filling molecular models. J. Mol. Graphics, 7, 54–59.Google Scholar
First citation Hessler, D. S., Young, S. J. & Ellisman, M. H. (1996). A flexible environment for visualization of three-dimensional biological structures. J. Struct. Biol. 116, 113–119.Google Scholar
First citation Höhne, K. H., Bomans, M., Pommert, A., Reimer, M., Schiers, C., Tiede, U. & Wiebecke, G. (1989). 3D-visualization of tomographic volume data using the generalized voxel-model. Volume visualization workshop, Chapel Hill, NC. Department of Computer Science, University of North Carolina at Chapel Hill.Google Scholar
First citation Hubbard, R. E. (1986). HYDRA: current and future developments. In Computer graphics and molecular modelling, edited by R. Fletterick & M. Zoller, pp. 9–12. Cold Spring Harbor Press.Google Scholar
First citation Johnson, C. K. (1970). ORTEP: a Fortran thermal-ellipsoid plot program for crystal structure illustrations. Report ORNL 3794. Oak Ridge National Laboratory, Tennessee, USA.Google Scholar
First citation Jones, T. A. (1978). A graphics model building and refinement system for macromolecules. J. Appl. Cryst. 11, 268–272.Google Scholar
First citation Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. (1990). Atomic structure of the actin/DNAse I complex. Nature (London), 347, 37–44.Google Scholar
First citation Koradi, R., Billeter, M. & Wuthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics, 14, 51–55.Google Scholar
First citation Kraulis, P. J. (1991). MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950.Google Scholar
First citation Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. (1996) Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76.Google Scholar
First citation Lauher, J. W. (1990). Chem-Ray: a molecular graphics program featuring an umbra and penumbra shadowing routine. J. Mol. Graphics, 8, 34–38.Google Scholar
First citation Lee, B. & Richards, F. M. (1971). The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400.Google Scholar
First citation Levinthal, C. (1966). Molecular modeling by computer. Sci. Am. 214, 42–52.Google Scholar
First citation Lorenson, W. E. & Kline, H. E. (1987). Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graphics, 21, 163–169.Google Scholar
First citation Max, N. (1983). SIGGRAPH'84 call for OmniMax films. Comput. Graphics, 17, 73–76.Google Scholar
First citation Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. University of Cambridge, England.Google Scholar
First citation Mujeeb, A., Kerwin, S. M., Kenyon, G. L. & James, T. L. (1993). Solution structure of a conserved DNA sequence from the HIV-1 genome: restrained molecular dynamics simulation with distance and torsion angle restraints derived from two-dimensional NMR spectra. Biochemistry, 32, 13419–13431.Google Scholar
First citation Nichols, W. L., Rose, G. D., Ten Eyck, L. F. & Zimm, B. H. (1995). Rigid domains in proteins: an algorithmic approach to their identification. Proteins Struct. Funct. Genet. 23, 38–45.Google Scholar
First citation O'Donnell, T. J. & Olson, A. J. (1981). GRAMPS – a graphics language interpreter for real-time, interactive three-dimensional picture editing and animation. Comput. Graphics, 15, 133–142.Google Scholar
First citation Olson, A. J. (1981). Tomato bushy stunt virus. Film. Lawrence Berkeley Laboratory, University of California, Berkeley, California, USA.Google Scholar
First citation Olson, A. J. (1983). Computer graphics in biomolecular science. NICOGRAPH '83, pp. 332–356. Tokyo: Nihon Keizai Shimbun, Inc.Google Scholar
First citation Pepinsky, R. (1952). X-RAC and S-FAC: electronic analogue computers for X-ray analysis. In Computing methods and the phase problem in X-ray crystal analysis. Pennsylvania State College, USA.Google Scholar
First citation Phillips, D. C. (1970). British biochemistry, past and present, edited by T. W. Goodwin, pp. 11–28. Academic Press.Google Scholar
First citation Phong, B. T. (1975). Illumination for computer generated images. Commun. ACM, 18, 311–317.Google Scholar
First citation Porter, T. K. (1979). The shaded surface display of large molecules. Comput. Graphics, 13, 234–236.Google Scholar
First citation Ramachandran, G. N. & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–437.Google Scholar
First citation Richards, F. M. (1977). Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. A, 6, 151–176.Google Scholar
First citation Richardson, J. S. (1981). The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339.Google Scholar
First citation Sanner, M.-F., Olson, A. J. & Spehner, J.-C. (1996). Reduced surface: an efficient way to compute molecular surfaces. Biopolymers, 38, 305–320.Google Scholar
First citation Sayle, R. A. & Milner-White, E. J. (1995). RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20, 374.Google Scholar
First citation Taylor, R. M. I., Robinett, W., Chi, V. L., Brooks, F. P. Jr, Wright, W. V., Williams, R. S. & Snyder, E. J. (1993). The nanomanipulator: a virtual reality interface for a scanning tunnelling microscope. Proc. ACM SIGGRAPH'93 (Anaheim, California, 1–6 August 1993). In Comput. Graphics Proc. Annu. Conf. Ser. 1993 (1993), pp. 127–133. New York: ACM SIGGRAPH.Google Scholar
First citation Teschner, M., Henn, C., Vollhardt, H., Reiling, S. & Brinkmann, J. (1994). Texture mapping: a new tool for molecular graphics. J. Mol. Graphics, 12, 98–105.Google Scholar
First citation Wright, W. V. (1982). GRIP – an interactive computer graphics system for molecular studies. In Computational crystallography, edited by D. Sayre, pp. 294–302. Oxford: Clarendon Press. Google Scholar